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Abstract

Using geometric invariant theory (GIT), we compactify the moduli
space of stable cubic fivefolds by adjoining strictly semistable hypersur-
faces. We show that the strictly semistable locus decomposes into 21 ir-
reducible components and provide a closed-orbit representative for each.
Our analysis of the boundary singularities reveals the presence of wild
isolated hypersurface singularities, suggesting that dimension five marks
a threshold beyond the ADE/unimodal paradigm observed in lower di-
mensions. We also determine adjacency relations among boundary com-
ponents, providing explicit instances of wall-crossing in Kirwan’s stratifi-
cation.

Introduction

The geometric invariant—theoretic (GIT) compactification of the moduli space
of cubic hypersurfaces is obtained by adjoining the strictly semistable hyper-
surfaces as boundary strata. In low dimensions—cubic threefolds (n = 3) and
cubic fourfolds (n = 4)—conventional analyses demonstrate that the boundary
is essentially governed by simple (ADE) or, at most, unimodal singularities; in
particular, wild isolated hypersurface singularities are not observed at the typi-
cal boundary points (see [Yok02] for cubic threefolds and [Laz09] for cubic four-
folds). This study demonstrates that the picture changes qualitatively for cubic
fivefolds (n = 5). We construct the GIT compactification by adjoining strictly
semistable fivefolds and demonstrate that its boundary decomposes into 21 ir-
reducible components, each admitting an explicit closed—orbit representative in
normal form (Table 2). An analysis of saturated Jacobian ideals determines the
singular loci of these representatives and presents two phenomena that are ab-
sent in lower dimensions: first, exactly two closed—orbit representatives (Cases
k = 1,6) exhibit a wild isolated hypersurface singularity of type QH(3)19 (quasi—
homogeneous, corank 3, u =7 = 19). Second, among the positive-dimensional
possibilities encountered—besides lines, smooth conics, quadric surfaces (includ-
ing a rank—3 cone), and space quartics CI(2,2)—are a quadric threefold (Case
k = 20) and quadric threefold cone (Case k = 14). In this sense, dimension five
marks a threshold beyond the ADE/unimodal paradigm (see Theorem C and
Table 3 in Section 5).



Theorem A (Decomposition of the strictly semistable locus). The
strictly semistable locus in P(W)//SL(7) decomposes into 21 irreducible com-
ponents. Each component admits a closed SL(7)-orbit represented by an explicit
normal form; see Table 2 (Section 4).

Theorem B (Closed—orbit representatives and stability criteria). For
each component, we produce a closed—orbit representative via a one—parameter
specialization followed by Luna’s centralizer reduction. When the centralizer is
a torus, polystability is certified by the convexr—hull criterion; otherwise we apply
the Casimiro—Florentino symmetric—1-PS criterion. In both cases, we obtain
explicit normal forms (see Section 4 and Table 2).

Theorem C (Singularities on the boundary). Let W = Sym>C” and write
Oy,..., Py C P(W)//SL(7) for the strictly semistable boundary components.
For each k, let ¢l be the closed-orbit representative from Section 4 and set
Xi = V(i) C P°. Then:

(1) The saturated Jacobian ideal of ¢} computes Sing(X},) explicitly; their
set-theoretic types are listed in the summary table of Section 5 (Table 3).
The positive-dimensional possibilities observed include: a line; a smooth
conic; a quadric surface (including the rank-3 cone in Case k = 10); a
quartic complete intersection CI(2,2); linear spaces P? or P?; and also a
quadric threefold and a quadric threefold cone (Cases k = 20 and k = 14,
respectively).

(2) Exactly two closed-orbit representatives have an isolated singular point,
namely £ = 1 and £ = 6. In these cases, the isolated point is quasi-
homogeneous of corank 3 with Milnor and Tjurina numbers p = 7 = 19;
Analytically, it is right-equivalent to X2Y + Y* + X Z3 (type QH(3)19).

(3) For a general point of a boundary component, the singular locus is one
of: a line, a smooth conic, a non-degenerate space quartic CI(2,2), or an
isolated point of corank 3.

Theorem D (Adjacency via wall-crossing). We record pairwise adjacencies
among strictly semistable components as wall-crossings in Kirwan’s stratifica-
tion. Aside from isolated components, the only nonempty pairwise intersections
occur in the eight pairs
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See Theorem 6.1 and [Kir84, DH98, Tha96].

Ideas and methods

Our starting point is a convex-geometric analysis of Hilbert—Mumford weights on
W = Sym3C7 [MFK94, Dol03]. Fixing a maximal torus 7' C SL(7) and writing



Supp(f) C I =Z%,(3) for the exponent set of f, we enumerate the mazimal T-
strictly semistable supports I(r)>¢ containing the barycenter n = (3/7,...,3/7).
An algorithmic search over the faces of Conv(I) that pass through 7 yields 23
candidates up to permutation; exactly one is T-unstable and is discarded, leav-
ing 22 families with respect to 7. Modulo SL(7) there is a single residual identi-
fication fy1 ~ fo2, and a case-by-case inclusion analysis then demonstrates that
no further identifications occur, producing the required 21 SL(7)-inequivalent
families (Algorithm 2.2, Proposition 3.4, Theorem 3.6).

For each family, we obtain a closed SL(7)-orbit by considering a one-parameter
subgroup limit and applying Luna’s centralizer reduction [Lun75]. If the central-
izer is a torus, we invoke the convex-hull criterion; if it is non-toric, we use the
Casimiro—Florentino criterion [CF12]. This dichotomy uniformly yields closed-
orbit representatives, from which the component dimensions follow (Section 4;
see also Table 2).

Lastly, to demonstrate non-inclusions among distinct families—and hence to
demonstrate that the 21 components vary significantly—we employ Grobner-
basis computations together with the Rabinowitsch trick (Section 7) [Buc65,
CLOO7].

Organization of the paper

Section 1 recalls the numerical criterion for (semi)stability in convex-geometric
language. Section 2 enumerates maximal strictly semistable supports for the
maximal torus T (Algorithm 2.2). Section 3 passes from T-data to the SL(7)-
action, eliminates redundancies, and arrives at the 21 families fi, ..., fa1; it also
records the non-inclusion statement among distinct families (with the proof de-
ferred to Section 7). Section 4 constructs closed-orbit representatives, proves
polystability (via the convex-hull or Casimiro—Florentino criterion), and records
component dimensions. Section 5 computes singular loci and lists isolated types,
including wild examples. Section 6 records adjacencies as wall-crossings in
Kirwan’s stratification. Section 7 provides the Groébner-based certification of
non-inclusions. Table 2 presents a compact summary of the normal forms and
dimensions.

We present below a table comparing cubic threefolds, fourfolds, and fivefolds.

Cubic threefolds in P* (See [Yok02].)
Moduli dimension. Number of monomials (5+§_1) = 35, projective dimension
34; diim PGL5 = 24. Thus dim M%1T =34 — 24 = 10.



Components of the GIT boundary (polystable closed orbits). Two irreducible
components:

(i) a P'-family {¢n g} with parameter [o : 3], and
(i) the isolated point represented by ¢ = vwz + 23 + y3.

Singularity profile (stability). Stable <= only double points of type A,, with
n < 4. Semistable <= only A, (n < 5), Dy, or Ay double points. Inside
the P'-component, the special member with o? = 44 is the secant threefold
(the singular locus is the rational normal curve).

Adjacency/closures. Both boundary components consist of closed orbits; the
P!-component and the isolated point are distinct boundary components (there
is no specialization of one to the other).

Cubic fourfolds in P° (See [Laz09, Yok08, Huy23].)

Moduli dimension. Number of monomials (6+§71) = 56, projective dimension
55; dim PGLg = 35. Thus dim MSIT = 20.

Boundary (closed orbit) families and their dimensions. There are six types,
denoted [C.1]-[C.6], of respective dimensions 1,2,3,1,1,0. A convenient set
of normal forms is:

[C1] uqgi(w,x,y,2) +vga(w,x,y, z) with V(u,v,q1,¢2) smooth.
[C.2] u(zy + zz + yz + az?) + vz + w?y + 2vwz (generic «).

[C.3] uy? + vz + Iy (w, z) uz + 2lz(w, z) vy + c(w, z) with 13 1 ¢, I1 1 c.
[C.4] uwvw + ¢(x,y, z) with V(u,v,w, ¢) smooth.

[C.5] auy? + v?z + w?x — uzz + 20wy (o # 0).

[C.6] uwvw + xyz.

Stability via singularities. A cubic fourfold with only isolated simple (ADE)
singularities is GIT stable. Conversely, non-stability occurs if any of the
following conditions holds: (1) Sing(X') contains a conic; (2) Sing(X') contains
a line; (3) Sing(X) contains the intersection of two quadrics; (4) X has a
double point of rank < 2; (5) a rank 3 double point with a hyperplane section
whose singular locus is a line with ranks < 2 along it; (6) a rank 3 double
point whose tangent-cone singular locus is a 2-plane in X.

Adjacency (specialization) among boundary strata. If we denote the families
[Cl] to [06} by Cl, SQ, ‘/3, 04, 057P6, then

Ps C SoN Vs, PseCinCyinCs.

Cubic fivefolds in PS



7+§_1) = 84, projective dimension

Moduli dimension. Number of monomials (
83; dim PGL; = 48. Thus dim MSIT = 35.

Components of the GIT boundary (strictly semistable locus). There are 21 ir-
reducible boundary components. At the level of closed-orbit representatives,
the positive-dimensional possibilities further include a quadric surface (includ-
ing a rank-3 cone), linear spaces P? and P3, as well as a quadric threefold and
a quadric threefold cone; see Table 3 (Section 5). Exactly two closed-orbit
representatives carry an isolated singular point (Cases k = 1,6), which is
quasi-homogeneous of corank 3 with Milnor and Tjurina numbers g = 7 = 19

(type QH(3)19).

Scripts used in this paper

The scripts used in this paper are publicly available at [Shi25]. In particular,
the archive includes the scripts for Sections 2, 5, 6, and 7.
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1 Nwumerical criterion for cubic fivefolds

In this section, we review the numerical criterion for stability or semistability
of cubic fivefolds. We use the following notations.

e Let Clzo, - ,x6]3 be the set of homogeneous polynomials of degree 3.

e For a vector x € Q7, wt(x) = Zzzo xy, is called the weight of x.

e We define 2720 = {x= (20,71, - ,76) € Z"|w}, > 0(k =0,1,---,6)},
Z(7d) = {x € Z"|wt(x) = d},

I= ZZ?)) N Z;o and it is simply called the simplex.

e Forr € Q7, we define I(r)s>g = {i € IJr-i> 0}, I(r)so = {i€ IIr-i > 0}
and I(r)—o = {i € [|r - i = 0}, here - denotes the standard inner product
of vectors.

e For a polynomial f = Zwt(i):g a;z' € Clzg,- -+ , 63, we define the sup-
port of f by Supp(f) = {i € Ilas # 0}



e We set n = (3/7,3/7,3/7,3/7,3/7,3/7,3/7) € Q7 and it is called the
barycenter of the simplex I.

e A vector r € Z" is said to be reduced when there is no integer a such that
la| > 2 and ir € Z7

We fix a maximal torus T' of SL(7). Consider a one-parameter subgroup
(1-PS for short) A : G, — SL(7) whose image is contained in T'. For a suitable
basis of C7, \ can be expressed as a diagonal matrix diag(¢™,#™,-- - ,¢"¢) where
t # 0 is a parameter of G,,. Let us choose and fix such basis. Then A corresponds

to an element r = (rg,71,--+ ,7¢) in ZEO). We can regard an element of Z(70) as
al-PSofT.

Definition 1.1. Let s be a subset of I. We say that s is not stable (resp.
unstable) with respect to T when s C I(r)>q (resp. s C I(r)so) for some 1-PS
r. For 0# f € Clxg, -, %63, we say that f is not stable (resp. unstable) with
respect to T when Supp(f) C I is not stable (resp. unstable) with respect to T.

The following theorem is the numerical criterion for stability via the language
of convex geometry.

Theorem 1.2. The cubic fivefold defined by f € Clxo,- -+ ,x¢]3 is not stable
(resp. unstable) if and only if there exists an element o € SL(7) such that f° is
not stable (resp. unstable) with respect to T

In particular, f is strictly semistable if and only if

(1) There exist o € SL(7) such that f7 is not stable with respect to T, and
(2) For any o € SL(7), f7 is semistable with respect to T.
Proof. See Theorem 9.1 of [Dol03]. O

2 Maximal strictly semistable cubic fivefolds with
respect to the maximal torusT

In this section, we list the irreducible components corresponding to strictly
semistable cubic fivefolds. For this purpose, we list all strictly semistable cubic
fivefolds with respect to the maximal torus 7. To solve this problem, we will
consider the set of maximal strictly semistable subsets of I. The order in the
set of subsets of I is given by inclusion. For this purpose, we list the set of all
maximal elements of S = {I(r)>o[r € Z{y }.

We solve this problem computationally. We need an algorithm which enables
us to obtain them in finitely many steps. Before giving such an algorithm, we
remark that I(r)>o and I(r')>o might be the same for two different vectors
r,v’ € Z(70)'

Lemma 2.1. Let I(r)>¢ be a mazimal element of S, wherer € Z(70)' Then there

exist 5 elements x1,X2, -+ ,X5 € I and a vector v’ € Z(70) such that they satisfy
the following three conditions:



(1) The vector subspace W of Q7 spanned by x1,--- ,Xs5,1 over Q has dimension
6

(2) The vector v’ is orthogonal to the subspace W of Q7.
(3) I(r)>0 = I(r")>0

Proof. Let us put C' = I(r) U {n}. We consider the convex-hull C of C' in Q7.
Let F be a face of C' containing the point 1. There is a normal vector r’ of F
in Z(70) such that C' C {x € Q7|r' - x > 0}. We have wt(r') = 0 because the
hyperplane defined by {x € Q7|r’ - x = 0} passes through the point 1. By the
definition of the faces of a convex set in Q7, we can take 5 points x1,Xa, - , X5
from the set INF such that x1,Xo, - ,X5,7 are linearly independent over Q. In
general we have I(r)>o C I(r')>0, and by the assumption that I(r)>¢ is maximal
in S, we conclude that I(r)>o = I(r')>o. O

By this lemma, we can determine the set of maximal elements of S up to
permutations of coordinates in finite steps using the following algorithm.

Algorithm 2.2. Let F be the set of five different points of I. We fix a total
order on F. As an initial data, we set &' = & and x = (xg, - ,25) be the
minimum element of F. We will modify S’ using the following algorithm.

o Step 1. If the subspace W spanned by o, -+ , 5,1 of Q7 has dimension
6 then take a reduced normal vector r = (rg,-+- ,16) € ZZO) of W and go
to Step 2, else go to Step 5.

o Step 2. If r = (ro, -+ ,7¢) salisfies the condition rqg > -+ > rg or rg <
-+ < rg, then go to Step 3, else go to Step 5.

o Step 8. Ifrg>--->rg (resp. 7o < -+ <rg) add I(r) (resp. I(—r)) to &’
and go to Step /.

e Step 4. Delete all elements of S’ that are not mazimal in S’ and go to
Step 5.

e Step 5. Replace the element x with the next element if x is not the maxi-
mum element, and go to Step 1. Otherwise, stop the algorithm.

We note that Step 2 removes the S; symmetry on the variables xg,- - , zg.
We also note that Step 4 is not essential but serves as technical measure to
save memory. After running this algorithm with the aid of a computer, we

find 23 elements I(rq1)>0,- - ,I(reg)>o in &', where ry = (ro, -+ ,76) € ZZO) is
a reduced vector with ro > --- > rg. When we compute the convex-hulls of
I(r1)>0,- - ,I(r23)>0 in Q7, only one of the convex-hulls of I(ry)>o does not

contain 1. We denote it as I(rez)>o. As I(rz3)>o is unstable with respect to T,
we remove it from the list. Thus, we can conclude that there are 22 maximal
strictly semistable cubic fivefolds for the fixed maximal torus 7. Because of this
algorithm, we have the following proposition.



Proposition 2.3. The set M = {I(r1)>0, - ,I(ra2)>0} is given as follows.

ri=(8,3,2,—1,-2,—4,—6) = (6,4,1,—1,—-2,-3,-5)
rs = (4,2,1,—1,—1,-2,-3) | rs=(3,2,1,0,— 1, —2,-3)
=(4,2,1,0,-1,-2,—4) | r5=(53,2,1,—1,—4,—6)
r7 = (6,4,2,1,—2, -3, —8) rs = (4,1,1,0,—2, 2, —2)
=1(2,2,0,0,—1,— 1, 2) | rio=(21,0,0,—1,-1,-1)
ri; = (2,0,0,0,0,—1,-1) rio = (3,2,1,1,—1, -2, —4)
ris = (2,1,1,0,—1,—1,-2) | ria=(2,2,0,—1,-1,—1,—1)
ris = (2,1,1,0,0, 2 —2) rig = (2,1,0,0,0,—1,—2)
ri7 =(1,1,1,0, O 2) rig =(1,1,0,0,0,—1,-1)
g = (2,2,2,0, 4) oo = (1, 1, 1, 170, —2, —2)
ro; = (1, 1,0,0,0,0, 2) roo = (1,0,0,0,0,0,—1)

For example, I(r1)>o is
— 3 2 2 2 2 2 2 2
]I(rl)ZO - {xo,xox:[,xoxz,x0$37$0x4,x0$5,$0$6,Z‘().'L']_,1‘0.1'1.%‘2,.1}'01‘13}3,1‘0.1'1.%‘4,

2 2

ToX1T5,ToT1T6, LOL, LOX2X3, TOXL2X4, LoL2T5, LoL2LE, LOL3, LOX3XT4, LOL3T5, LOL3ITE,
2 2 .3 .2 2 2 2 2 2

LTy, TOLATE, LOLALEG, LOL5, L], LIL2, LILZ, T1L4, L1T5, L1L6, L1XLo, L1XT2X3, T1T2T4,

2 3,2 2 2 2
T1T2Ts5, 1'1.%3, T1X3T4, x2) .’E21"3, ‘?U21'47 "E_21'5, 1’2$3}.
Here we use the notation zg’z| ---zg for an element (ig,i1,- -

,i6) € Z(3) in
order to save space.

Remark 2.4. The following vectors can serve as 13, i.€., there are several vec-
tors that yield the setI(ra3)>0. For ezample, we can take rog = (8,5,3,2, —4, —4

Remark 2.5. The algorithm in this section has been comprehensively general-
ized by [GMMS23].

3 21 maximal strictly semistable cubic fivefolds
under action of SL(7)

An element I(rg)>¢ of M represents a family of cubic fivefolds whose defining
polynomial’s support is contained in I(rg)>o. In this section, we analyze the
inclusion relations among I(ry)>o under the action of SL(7). Let fi, be a generic
polynomial whose support is I(ry)>o. (k = 1,2,---,22). If we express f
directly, it becomes too long, so we introduce notation.

Definition 3.1. The symbols ¢, q,1, o stand for a cubic form, a quadratic form,
a linear form, and a constant term, respectively. Similarly, the symbols q;,l;, o
denote the i-th quadratic form, a linear form, and a constant term, respectively.

The following theorem is a direct consequence of the list in Proposition 2.3.

af22

Theorem 3.2. Using the above notations, the generic polynomials of f1,---
are the following forms.

o f1 = c(xo,x1,22) + q1(w0, x1,T2)x3 + L1 (w0, 21, 22)25 + {q2(0, 71, 2) +

lo(z0, 71)23} 74 + 012023 + {g3(70, 71, 72) + wol3(w3, 74) }25 + QT022 +
{qa(zo, z1) + zola(x2, T3, 24) } 26

,—10).



o fo=c(xo, 21, 22)+q1(x0, 21, 22) T3+ (o, 21)23+H{ g2 (0, 21, 22)+la (20, 1) T3} T4+
I3(x0, m1)x3+{gs (20, 1) +1a(z0, 21) 245 (20, 1) T3 +01T0T4 } 25+ T0TE+
{aa(zo, 21) + ls(z0, 21)72 + 37073} 76

o f3 = c(xo, 1, 22)+q1(x0, 21, T2) 23+ (o, 1) 23+{q2 (0, T1, 22)+Hla(20, 1) T3} T4+
I3(xo, 21)2F + {qs(wo, 21, 22) + wola(xs, 24) s + 12022 + {qa(o, 21) +
l5(zo, x1)x2 + wols (3, 74) }6

o fu=c(zo, w1, x2)+{q1 (0, x1)+11 (0, 21) T2} x3+12(20, 21) 23 +{q2 (w0, 1)+
ls(zo, 21) 22 + lu(wo, T1) 23} + I5 (20, 21) 2% + {g3(20, 21) + ls (w0, 1) T2 +
lr(zo, 21)xs + ls(20, 21) 24} 25 + lo (20, 21)2E + {qa(20, 21) + 1o (20, 21) T2 +
li(zo, z1) w3 + lia(z0, 21)xa + liz(z0, 1) @5 Y6 + lia(wo, 21) 2

o f5 = c(zo, 1,22, 73) + {q1(z0, x1, 22) + 11 (x0, T1, T2) w3 }2a + 2 (20, 71 )2 +
{@2(z0, x1,22) + 3(x0, x1)x3 + cuxora}as + {qg3(xo, 1) + la(zo, x1)22 +
Q2T0T3 }T6

o fo = c(xo, 1,22, 23) + {q1(z0, x1, 22) + 11 (20, T1, T2) w3 }Ta + l2 (20, 71) 25 +
{@2(w0, w1, 22) + l3(x0, 1) 23 + Q12024 5 + {g3(20, 1) + Tola(w2, 23) }26

o fr=c(zo, 1,32, 23)+q1 (w0, 21, T2, T3)Ta+11 (20, T1, T2) 25 +{q2 (20, 21, T2)+
la(zo, x1)x3 + cawoxa s + {g3(xo, x1) + xol3(x2, 3) } 26

o fs=c(xo, 1, w2, 23) +q1(w0, 21, T2, ¥3) T4+ 11 (w0, 1) 2] + {q2(20, 1, 22) +
la(wo, x1, T2) T3 + a1 zoza 5 + Qozox? + {g3(x0, T1) + a3ToT2}T6

o fo = c(xo, 21,22, 23)+{q1 (0, T1, 22)+onxors }rataszori+{ga(wo, 21, T2)+
zoli (3, 24) }os + azwoxi + {g3(w0, x1,2) + 2ola(T3, T4, T5) }T6 + QazoTE

o fi0 = c(zo, 1, 22, x3)+{q1 (w0, x1)+l1 (z0, T1) T2+ (T0, 1) T3 }ra+H5 (20, T1 )25+
{az(wo, 1) + la(zo, m1) 22 + ls (20, 1) 23 + (w0, 1) Y25 + l7 (20, 21) 22 +
{a3(zo, x1) + ls(xo, 1) 22 + lo(20, 1) 23} 76

o f11 = c(xo, 1, 2, x3)+{q1 (0, 1) +1 (z0, T1) T2+ (20, 1) T3 fT 4+ TOTI+
{g2(z0, 21)+la (w0, 1) 2245 (20, T1) T3+ 2m084 Y5+ 302+ {17 (20, T1) W2+
ls(zo, 21)x3 + 2olo (T4, T5) }6 + uwoxd

o fi2 = c(xo, 1,22, x3)+q1 (20, 21, T2, T3)Ta+1 (20, 1) 23+ {q2(T0, 71, T2, T3)+
a1zox4a }s + {g3(xo, x1) + zola(x2, 23) 26

o fiz3 = c(xo, x1, 22, 23) + {q1(x0,x1,22) + li(x0, 1, x2) T3} s + 041210096?1 +
{q2(z0, 1, 22) + l2(20, 21, T2) T3 + Q2@ox4 } x5 + zzor? + {g3(20, T1, 22) +
Q4T0T3 }T6

o fia = c(zo, z1, T2, x3)+H{q1 (@0, T1, T2)+1 (T0, T1, T2) T3 }wa+2 (20, T1, T2) T+
{a2(z0, 21, 22) + ls(w0, 21, 2) w3 + la(T0, T1, T2)2s }05 + 5 (20, X1, T2)2E +
QS($0,$17$2)$6

_ 2

o fi5 = c(zo, 21,2, T3, 4)+20l1 (20, T1, T2, T3, Ta)T5t1T0T5+T0l2(T0, T1, T2, T3, T4, T5)Te+
2
Q2T0Tg



o fig = c(zo, x1, 22, 23, xa)+H{q1(x0, 1, T2)+xol1 (23, 24) }5+{q2 (20, 1, 22)+
zola (23, 24) } 6

o fi7 = c(zo, 21,22, 23, x4)+H{q1 (x0, x1)+11 (20, 1) 222 (20, 1) 23+3(20, 1) T4 } 5+
12022 + {q2(x0, x1) + Tola (22, T3, T4) Y26

o fis = c(zo, x1, 22, 23, Ta)+H{q1 (20, T1, T2)+11 (20, 1, T2)T3+12(T0, T1, T2)Ta }25+
q2($07$1,$2)$6

o fio = c(wo, w1, 22,23, 4)+{q1 (0, x1)+11 (z0, 1) 22 +Hl2 (20, 21)23+13(T0, 1) T4} 5+
{@2(x0, 1) + la(x0, 21)22 + I5(20, 1) 23 + l6(T0, 1) T4 } 26

o fao = c(wo, w1, 72,23, 74) + q1 (0, T1, T2, 23)x5 + q2(T0, T1, T2, T3)T6
o for = c(xo, 1,22, 23,24, 75) + q(20,21)T6
o fog = c(xo, 1,2, 23,24, %5) + xol(T0, T1, T2, T3, T4, T5)Tg

For an element ¢ in SL(7) and J C I, we set J7 = UsSupp(f7), where f runs
through all polynomials with Supp(f) C J.

Definition 3.3. We denote
I(rg)>o0 € I(r;)>0 mod SL(7)

when there exists o € SL(7) such that I(ry)%, € I(r;)>0 and say that I(rg)>o is
included in I(r;)>o modulo SL(7). -

We construct a smaller subset M’ of M such that (1) any element I(ry)>o
in M is included in some element I(r;)>o in M’ mod SL(7), (2) any element
I(ry)>o in M’ is not included in any other I(r;)>o in M’ mod SL(7) (1 <1 < 22)

Proposition 3.4. There are two relations
° H(r21)20 Q ]1(1‘22)20 mod SL(7)
[ ] H(rQQ)ZO Q ]1(1‘21)20 mod SL(?)

Proof. fo2 = c(xg, -+ ,x5) + xol(X0, -+ ,25)T6
= c(zo, - ,25) + zol(xo, 21)T6
= c(xo, - ,x5) + q(x0, 1) 6
= fa
Here = means equality after an SL(7) change of coordinates. O

From this proposition, we can remove foo from the list. Thus, we obtain a
list of 21 types of cubic fivefolds.

Proposition 3.5. For any 1 < k,l < 21 with k # [, there is no inclusion

H(rk)zo g H(I‘l)zo mod SL(?)
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Proof. The proof is deferred to Section 7. For now, we take this fact for granted
and proceed with the argument. Consequently, we obtain the following theorem.
O

Theorem 3.6. The moduli space of strictly semistable cubic fivefolds has 21
irreducible components, represented by f1, fo,..., fo1.

4 Closed orbits of 21 families

In this section, we find the closed orbits in the 21 families of strictly semistable
cubic fivefolds. We define A\ (t): G,, — SL(7) as 1-PSs corresponding to ry.
We shall use the following convex—geometric criterion repeatedly in this section,
so we record it at the outset.

For the following theorem, see [PV94].

Theorem 4.1 (Convex-hull criterion). Let T' be an algebraic torus acting lin-
early on a finite-dimensional vector space, V', and let v € V. Subsequently, the
following conditions are equivalent:

(1) the T-orbit T - v is closed in V;
(2) 0 is an interior point of the convex-hull of Supp(v) in X (T)g.

Here, Supp(v) denotes the set of T-weights that occur in v, and X (T)gr is the
real vector space spanned by the character lattice X(T).

The following series of definitions and theorems will be extremely useful for
determining polystability in cases where the centralizer is not a torus and the
convex-hull criterion cannot be applied. Because they will be used repeatedly
from this point on, we state them here beforehand.

Notation 4.2. Let G be a reductive algebraic group, and let X be an affine
variety equipped with an algebraic G-action.

(1) We denote by Y (G) the set of one-parameter subgroups of G.
(2) When x € X, we put Ay = {\(t) € Y(G): limy_o \(t) - x exists}.

(3) When X € Y(G), we define P(\) = {g € G: limy_o A(t)-g-A(t)™! ewists}.
It is a parabolic subgroup of G.

Definition 4.3. We say that a subset A C Y (G) is symmetric if given any
X € A, there is another 1-PS N € A such that P(A) N P(X') is a Levi subgroup
of both P(X\) and P(\).

We need the following theorem (Theorem 1.1 of [CF12]):

Theorem 4.4. (Casimiro—Florentino criterion) Let G be a reductive algebraic
group and X be an affine G-variety. Then, a point x € X is polystable if and
only if A, is symmetric.

11



Lemma 4.5 (rank 1 symmetry for Casimiro-Florentino). Let G be a reductive
algebraic group acting on an affine G-variety X, and let ¢ € X. Assume that
there exists a one-parameter subgroup p € Y (G) such that

where 0 denotes the trivial 1-PS. Then A, is symmetric in the sense of Defi-
nition 4.3. Consequently, by the Casimiro—Florentino criterion (Theorem 4.4),
the point x s polystable.

Proof. Fix k # 0. It is standard that P(uy) and P(u_j) are opposite parabolic
subgroups and that

P(up) N P(p—i) = Ca(u(Gn))

which is a Levi subgroup of both P(y,) and P(p—x). The inclusion Ce (14(Gyr,))
P(px) N P(pu—g) is immediate: if g centralizes u(Gy,), then px(t) gur(t) "t =g
for all t € G,,, so both limits as ¢ —+ 0 and ¢t — oo exist. For the reverse
inclusion, take g € P(ug) N P(p—r) and consider

¢:Gp — G, o(t) = () g (t) .

By assumption, the limits lim;_,o ¢(t) and lim;_, ., ¢(¢) both exist (the latter
because g € P(u—x) and ¢(1/s) = p_p(s) gp—r(s)~' for s — 0). Hence, ¢
extends to a morphism ¢ : P! — G. As G is affine, ¢ is constant; in particular,

pr(t) g pk(t) ™' = o(t) = (1) =g forall t € G,

Thus, g centralizes y1x(Gy,) = p(Gy), ice. g € Cq((Grr)). This proves P(ug)N
P(pu-1) = Ca(p(Gm)).

Based on the hypothesis g, i— € A, so the requirement in Definition 4.3
is satisfied for every A = . Hence, A, is symmetric. The last assertion follows
from Theorem 4.4 (Casimiro—Florentino). O

N

Convention 4.6. Throughout this section, we fix the following setup and no-
tation.

(1) Coordinates and the mazimal torus. We work on W = Sym3C”
with homogeneous coordinates (xo, ...,xq). We fix the diagonal maximal torus
T C SL(7) acting by diag(po, - . -, te) with [ [, ni = 1. A one-parameter subgroup
(1-PS) is written as

A(t) = diag(t™,...,t%), > ai=0.

(2) 1-PS limits and centralizer reduction. For each k € {1,...,21} let
A correspond to ry, in Proposition 2.3, and let fi be the generic member from
Theorem 3.2. We set the 1-PS limit

r = %E%Ak(t) fr

12



Put H := M\(Gy,) and write Cq(H) for the centralizer in G = SL(T7). Let
WH C W be the H-fived subspace. By Luna’s centralizer reduction [Lun75],
closedness of SL(7) - ¢y in P(W)* is equivalent to closedness of Ca(H) - ¢y in
W,

(8) Two criteria for polystability. If Co(H) is a torus, we certify closed-
ness by the convex-hull criterion (Theorem 4.1). If Cq(H) is non-toric, we use
the Casimiro—Florentino criterion (Theorem 4.4) as follows: for A € Y(Cq(H))
we write wty(x;) for the A\-weight on x;, and w(m) for the induced weight of a
monomial m. We denote by S the linear constraint coming from det = 1 on
Co(H) (the “trace” of block weights), so S =0 for every A. We then ezhibit a
positive linear identity

chw(mj) =C-S (¢; >0, C>0).
J

If X € Ay, then every w(m;) > 0 and S = 0; hence, all w(m;) = 0; solving
yields a symmetric 1-PS py, so Ay, is symmetric and ¢y, is polystable.

(4) Normal forms and coefficient normalizations. Passing to “nor-
mal form,” we are allowed to: (i) multiply by a nonzero scalar; (ii) act by
Ce(H)/H (e.g., block GL(2), GL(3) actions) to diagonalize blocks; and (iii)
use diagonal elements of T (with [] u; = 1) to normalize nonzero coefficients to
1. Parameters (a, p,0,...) record the residual moduli.

(5) Dimension count. Component dimensions are computed as

dim(W*) — dimeg(Ce(H)) — 1,

where dimeg is the dimension of the effective Cq(H)-action on W (central
tori acting trivially are subtracted). We state explicitly when a central factor
acts trivially.

(6) Weights and symbols. We freely reuse symbols a; for nonzero coeffi-
cients of @i prior to normalization. For 1-PS families obtained in the CF-check,
we write p(t). All such conventions are in force throughout § 4.

Let us now determine, for each k = 1,2,...,21, a polynomial whose SL(7)-
orbit is closed. The procedure is uniform across all cases. First, we take a
1-PS limit to produce a candidate ¢ for a polystable point. Next, to apply
Luna’s criterion, we take the stabilizer H C G = SL(7) of ¢y; we choose H
as large as possible so that its centralizer Co(H) is as small as possible, which
simplifies the closedness check. Write W for the H-fixed locus in the ambient
representation W = Sym3C7. If Cq(H) is a torus, we apply the convex-hull
criterion (Theorem4.1) to show that Cg(H) - ¢ is closed in W if Co(H) is
not a torus, we instead apply the Casimiro—Florentino criterion (Theorem 4.4)
to obtain the same conclusion. In either case, Cq(H) - ¢y is closed in WH;
hence, by Luna’s criterion, the orbit SL(7) - ¢y is closed in P(Sym*C7)**. Lastly,
by determining a normal form of ¢ under the action of Cq(H)/H, we fix the
dimension of the corresponding component of the moduli space for that k.
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4.1 Case k=1
1-PS limit. Set

() = diag(®, £, 2, 7, 72,74 70, teG,,.
For a generic f1 as in Section 3, the 1-PS limit is

: 2 2 2 2
o1 = }m}) A1L(t)-f1 = a1 xaw5+ag x1T3T4+a3 T5T5+a4 ToTE 4G5 T]T6+A6 ToTaTe.
—

H and Cg(H). Let H = A\ (G,,). The diagonal weights on (xo,...,zs) are
pairwise distinct; hence, Cq(H) = T (the maximal diagonal torus). Each mono-
mial of ¢; has H-weight 0, so ¢; € WH.

Polystability (Luna + convex-hull). By Luna’s criterion (see [Lun75]),
closedness of the SL(7)-orbit of ¢ is equivalent to closedness of the T-orbit in
WH. By the convex-hull criterion (Theorem 4.1), it suffices to check that 0 is
an interior point of Conv(Supp(¢1)) € X(T)r =~ R7/R(1,...,1). This holds
because the exponent vectors of the six monomials satisfy

2(0,0,1,2,0,0,0) +2(0,1,0,1,1,0,0) + 2(0,0,2,0,0,1,0)

+2(1,0,0,0,0,2,0) + 2(0,2,0,0,0,0,1) + 4(1,0,0,0,1,0,1) = 6(1,1,1,1,1,1, 1),

(1)
Hence, ¢ is polystable and SL(7) - ¢ is closed.

Normal form and component dimension. Let diag(uo,...,us) € T with
H?:o w; = 1. Along with the overall projective scaling, this acts on the six
coefficients of ¢, via the characters determined by the exponent vectors in (1);
we may normalize all six coefficients to 1 simultaneously. Thus, a normal form

1S

f 2 2 2 2
rf = Tox3 + X1X3%4 + X53T5 + ToT5 + T{Te + ToTaZe.

The residual T-stabilizer is finite; hence, the corresponding component of the
moduli is zero-dimensional.

4.2 Case k=2
1-PS limit. Set

Ao(t) = diag(t®, t*, ¢, t71 ¢72, ¢73, t70), t € G-
For a generic f5 as in Section 3, the 1-PS limit is
@2 = }1_1}% Aa(t)fa = a1$3$4+a2$1$i+a3x1$3$5+a4.’£0$§+a51’1x2$6+a6$0$3$6.
H and Cg(H). Let H = \3(G,,). The diagonal weights on (xo,...,xzs) are

pairwise distinct; hence, C(H) = T (the maximal diagonal torus). Each mono-
mial of ¢ has H-weight 0, so ¢o € wWH,
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Polystability (Luna + convex-hull). By Luna’s criterion, closedness of

the SL(7)-orbit of ¢o is equivalent to closedness of the T-orbit in the H-fixed

subspace. By the convex-hull criterion (Theorem 4.1), it suffices to check that

0 lies in the interior of Conv(Supp(¢2)) C X(T)g ~ R7/R(1,...,1). This holds

because

2(0,0,2,0,1,0,0) + 2(0,1,0,0,2,0,0) + 2(0,1,0,1,0,1,0)

+2(1,0,0,0,0,2,0) + 2(0,1,1,0,0,0,1) + 4(1,0,0,1,0,0,1) = 6(1,1,1,1,1,1,1),

(2)

written in terms of the exponent vectors of the six monomials of ¢5. Hence, ¢o
is polystable and SL(7) - ¢2 is closed.

Normal form and component dimension. A diagonal scaling diag(ug, - - -, j46) €
T with [Ju; = 1, together with an overall scalar, acts on the six coefficients

via the characters determined by the exponent vectors in (2); thus we may
normalize all six coefficients to 1 simultaneously. Therefore, a normal form is

f 2 2 2
¢121 = T5T4 + 124 + 12375 + ToT5 + T1T226 + ToX3T6-

The residual T-stabilizer is finite; hence, the corresponding component ®5 of
the moduli is zero-dimensional.

4.3 Case k=3
1-PS limit. Set

As(t) = diag(th, 2, t, 7 ¢t 72, 170), t € G-
For a generic f3 as in Section 3, the 1-PS limit is
3 = }E}I{l} )\3(75) . f3 = ax :clxg + ag x1x374 + a3 l’l$i

2 2
+ aq T5x5 + a5 Toxy + ag T1X2Te + a7 ToT3Te + A8 ToT4T6-

H and Cg(H). Let H = A\3(G,,). The multiplicities of the diagonal weights
on (xg,...,xe) are 1 on xg, 1, %2, x5, Te and 2 on (x3,x4); hence,

diag(ag, a1, a2) © A © diag(as, ag)

H)= ~ SL(2) x G?,.
Cc(H) { a; € Gy, A€ GL(2), apanag det(A)ag,aG:l} SL(2) x Gy,

Each monomial of ¢3 has H-weight 0, so ¢3 is H-fixed.
Polystability (Luna + Casimiro—Florentino). By Luna’s slice/centralizer
reduction, the closedness of the SL(7)-orbit of ¢3 is equivalent to polystability

for the Cq(H)-action on the H-fixed subspace. After conjugating inside the
SL(2)-block, any A € Y (Cs(H)) may be chosen with weights

wt(zo, ..., 2x6) = (aog, a1, as, c+n, c—n, as, ag), S := ag+ai+as+2ct+as+ag =0
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(as in Convention 4.6. Let w; be the A\-weight of the i-th monomial of ¢3. Then

wy = a1 +2(c+n), wy = ay + 2c, w3 = a1 + 2(c — n),
wy = 2a3 + as, ws = ag + 2as, we = a1 + az + ag,

wr =ag+ (c+n)+as, ws=ag+ (c—n)+ as.
A direct computation yields the positive linear identity
w1 + wo + 2ws + 2wy + 2ws + 2wg + 3wy +wg = 6S. (3)

If X € Ay,, then all w; > 0 and S = 0; by (3) they must all vanish. Solving
gives

n=0, a =-2c, as=—2a2, ag=4%as, ag=2c—as, ay=—c.
Thus, with k € Z,
e (t) := diag(t*™, 25 % 7R 7k 2R ) Ay, = {ue | k € Z}U {0}
Therefore Ay, is symmetric, and by the Casimiro-Florentino criterion ¢3 is
polystable; in particular, SL(7) - ¢3 is closed.
Normal form and component dimension. On the H-fixed slice, the eight
weight-zero monomials are

T1T3, T1T3T4, T1TT, TIT5, TOTE, T1TaTe, TOTITG, ToTATG,

Therefore, W denotes their span. i.e.
WH = (1) @ Sym?(x3, 24) @ Sym? (x2) @ 5 ® 20 @ Sym?(x5) ® 2o @ (r3,T4) @ T .

) (I1) (I1T) (Iv)

The centralizer is
Co(H) = SL(2) x G,

acting by SL(2) on (z3, z4) and by a diagonal torus on (zg, z1, 22, x5, xg) (subject
to the product-one condition).

(I) binary quadratic on (x3,x4). Write the z1-part as a binary quadratic
Q = a123 + agw3wy + azz? € Sym*(z3,z4). As A(Q) is SL(2)-invariant while
rescaling x1 scales @ (and hence A) homogenously, for a generic (nondegenerate)
Q, there exists A € SL(2) and a rescaling of x; such that Q ~ 23 + x3z4 + 23.
Thus, the block (I) is fixed to 123 + z12324 + 2123

(II)(III)(IV) torus normalizations. Let 7" = {diag(uo, p1,p2) ® Iz ®
diag(ps, pe) : poprpepsie = 1}. Under T7, the coeflicients transform by the
characters determined by exponent vectors: z3x5 by u3us, xoxg by po ug, T1X2Tg
by w1 pepe, while zozszs and zozaxe both by uops. Using po, w1, o, s, pe (to-
gether with an overall scalar), we set x3w5, z922, and 217226 to have coefficient
1.
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The remaining ratio. The pair (zoz3z¢, Tox42e) is scaled by the same torus
character g, and the stabilizer in SL(2) of 2% + x3z4 + 27 is finite; hence,
only the ratio remains. This yields the one-parameter normal form

f 2 2,2 2 x
5 () = v125+ 0 B3mg T T TS+ ToTE+ T ToXe+ XT3 Te+ ToTazs, o € CX.

For general o the residual stabilizer is finite, and the corresponding component
®3 is one-dimensional.

4.4 Case k=14
1-PS limit.

Aa(t) = diag(t®, %, ¢, 1, 71, 72 ¢73), t€Gy,.
For a generic f; as in Section 3, the 1-PS limit is

P4 = }gr(l) Ag(t) - fa

3 2 2
= a1 T3+ A2 X2T3T4 + A3 T1Ty + A4 T5T5 + A5 T1T3T5 + A6 ToT4Ts + A7 T1T2Xe + Gg ToT3L6-

H and Cg(H). Let H = M\(G,,). The diagonal weights on (xo,...,xzs) are
pairwise distinct; hence, Cg(H) = T (the maximal diagonal torus). Each mono-
mial of ¢4 has H-weight 0, so ¢4 € WH.

Polystability (Luna 4 convex-hull). By Luna’s criterion, closedness of
the SL(7)-orbit of ¢4 is equivalent to closedness of the T-orbit in W#. By the
convex-hull criterion (Theorem 4.1), it suffices to check that 0 is an interior
point of Conv(Supp(¢s)) C X(T)r =2 R7/R(1,...,1), which holds because the
exponent vectors satisfy

(0,0,0,3,0,0,0) + (0,0,1,1,1,0,0) + (0,1,0,0,2,0,0) + (0,0,2,0,0,1,0)
+2(0,1,0,1,0,1,0) +6(1,0,0,0,1,1,0) + 6(0,1,1,0,0,0,1) (4)
+3(1,0,0,1,0,0,1) = 9(1,1,1,1,1,1,1).

Hence, ¢4 is polystable and SL(7) - ¢4 is closed.

Normal form and component dimension. A diagonal scaling diag(uo, - - ., t6) €
T with [ pu; = 1, together with an overall scalar, acts on the eight coefficients

via the characters determined by the exponent vectors above; we may normalize
seven of them to 1. Thus, a normal form is

£ 3 2,2

0 (@) = 2540030y + 21 T F TS5+ L1 T3T5+TX4T5+HT1 TaLe+Q ToT3 T, o e C*.
The residual T-stabilizer is finite; hence, the corresponding component &, of

the moduli is one-dimensional.

17



4.5 Case k=5
1-PS limit. Set

As(t) = diag(t!, 2, ¢, 1, t7H, 72,171, t € Gy,
For a generic f5 as in Section 3, the 1-PS limit is

: 3 2 2 2 2
¢5 = }H% A5(t)-f5 = a1x5+a2x003T4+a321 0]+ a4T5T5+0521T3T5+06T0TE +A7T7T6+HA8ToT3T6.
—

H and Cg(H). Let H = A\5(G,,). The diagonal weights on (xq, ..., xg) are
pairwise distinct; hence, Cq(H) = T (the maximal diagonal torus). Each mono-
mial of ¢5 has H-weight 0, so ¢5 € WH.

Polystability (Luna + convex-hull). By Luna’s criterion, closedness of
the SL(7)-orbit of ¢5 is equivalent to closedness of the T-orbit in the H-fixed
subspace. By the convex-hull criterion (Theorem 4.1), it suffices to check that
0 lies in the interior of Conv(Supp(¢s)) C X(T)r = R7/R(1,...,1). This holds
because the exponent vectors of the eight monomials satisfy
(0,0,0,3,0,0,0) 4 (0,0,1,1,1,0,0)
+10(0,1,0,0,2,0,0) 4+ 10(0,0,2,0,0,1,0)
+(0,1,0,1,0,1,0) + 5(1,0,0,0,0,2,0) (5)
+5(0,2,0,0,0,0,1) 4+ 16(1,0,0,1,0,0, 1)
=21(1,1,1,1,1,1,1),

Hence, ¢5 is polystable and SL(7) - ¢5 is closed.

Normal form and component dimension. A diagonal scaling diag(ug, . . ., 1g) €
T with [] u; = 1, together with projective rescaling, acts on the eight coefficients

via the characters determined by the exponent vectors in (5); we can normalize
seven of them to 1. A convenient normal form is

f 3 2, 2 2, 2 x
2 (@) = 23+20x324+ 01 2+ T5T5+ 21 T3Ts+ToTE + LT+ TX3 X6, aeC”.

The residual T-stabilizer is finite; hence, the corresponding component ®5 of
the moduli is one-dimensional.

4.6 Case k=6
1-PS limit. Set

Xe(t) = diag (%, t*, 2, ¢, 72, t73, t7%), t € Gyp.
For a generic fg as in Section 3, the 1-PS limit is

. 2 2 2 2
6 = }m% Xo(t)-fo = a1 ¥3T4+0a2 T105+0a3 ToT3T5+04 ToTE+a5 T1T6+A6 ToT2Ts-
—
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H and Cg(H). Let H = X\¢(G,,). The diagonal weights on (zo,...,xzs) are
pairwise distinct; hence, C(H) = T (the maximal diagonal torus). Each mono-
mial of ¢g has H-weight 0, so ¢4 lies in the H-fixed subspace.

Polystability (Luna 4+ convex-hull). By Luna’s criterion, closedness of
the SL(7)-orbit of ¢¢ is equivalent to closedness of the T-orbit in the H-fixed
subspace. By the convex-hull criterion (Theorem 4.1), it suffices to check that 0
is an interior point of Conv(Supp(¢s)) C X(T)r = R7/R(1,...,1). This holds
because
(0,0,0,2,1,0,0) 4 (0,1,0,0,2,0,0) + (0,0,1,1,0,1,0)
+(1,0,0,0,0,2,0) + (0,2,0,0,0,0,1) +2(1,0,1,0,0,0,1) (6)
=3(1,1,1,1,1,1,1),

written in terms of the exponent vectors of the six monomials of ¢g. Hence, ¢g
is polystable and SL(7) - ¢¢ is closed.

Normal form and component dimension. A diagonal scaling diag(uo, - - ., t6) €
T with [ u; = 1, together with an overall scalar, acts on the six coefficients via

the characters determined by the exponent vectors in (6); we may normalize all

six coefficients to 1 simultaneously. Thus, a normal form is

f 2 2 2 2
¢g = 1324 + X125 + X2X3T5 + ToT5 + T]Te + ToT2Tg.

The residual T-stabilizer is finite; hence, the corresponding component ®¢ of
the moduli is zero-dimensional.

4.7 Case k=7
1-PS limit. Set

Ar(t) = diag(t®, 2, ¢, ¢, 71, 71 t70) | t € Gy
For a generic f7 as in Section 3, the 1-PS limit is

. 2 2 2
Q7 = thn(l) A7 () fr = a1 Towi+as T5T5+a3 T1T3T5+as ToT4T5+a5 TIT6+a6 ToT3T6-
—

H and Cg(H). Let H = A\(G,,). The diagonal weights on (xo,...,xzs) are
pairwise distinct; hence, Cg(H) = T (the maximal diagonal torus). Each mono-
mial of ¢7 has H-weight 0, so ¢7 € WH.

Polystability (Luna 4+ convex-hull). Based on Luna’s criterion, closedness
of the SL(7)-orbit of ¢7 is equivalent to closedness of the T-orbit in the H-fixed
subspace. By Theorem 4.1, it suffices to check that 0 is an interior point of
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Conv(Supp(¢7)) € X(T)r = R7/R(1,...,1). This holds because the exponent
vectors of the six monomials of ¢7 satisfy the positive relation

(0,0,1,0,2,0,0) +(0,0,2,0,0,1,0) + (0,1,0, 1,0, 1,0)
+(1,0,0,0,1,1,0) + (0,2,0,0,0,0,1) +2(1,0,0,1,0,0,1) (7)
=3(1,1,1,1,1,1,1).

Hence, ¢7 is polystable and SL(7) - ¢7 is closed.

Normal form and component dimension. A diagonal scaling diag(ug, - - ., 46) €
T with [Ju; = 1, together with an overall scalar, acts on the six coefficients

via the characters determined by the exponent vectors in (7); hence, we may
normalize all six coefficients to 1 simultaneously. A normal form is therefore

f 2 2 2
qﬁ’? = XXy + T53x5 + T1T3T5 + ToT4aT5 + T]Te + ToT3T6-

The residual T-stabilizer is finite; hence, the corresponding component ®; of
the moduli is zero-dimensional.

4.8 Case k=38
1-PS limit. Set
As(t) = diag(t*, ¢, ¢, 1, t72, t72,¢72), t € Gp.
For a generic fg as in Section 3, the 1-PS limit is
g = %gr(l) As(t) - fs = almg + aoxixy + a3T1T0xy + a4TiT4 + agrixs 4 arriToTs + agTaTs

2 2 2
+ a11T1Te + A12T1T2%6 + A13T5%6 + A5X0Xy + A9ToT4T5 + A14T0T4T6

2 2
+ a10T0T5 + A15T0T5X6 + G1620Tg-

H and Cg(H). Let H= A\s(G,,). The weights on (xy, ..., xs) are (4,1,1,0, -2, —2, —2)
with multiplicities (1,2, 1, 3); hence,

Ca(H) = {diag(a)0 AGdiag(8)®B : o, € G, A € GL(2), B € GL(3), afdet(A) det(B) = 1}.

Thus Cq(H) = (Gm x GL(2) x Gy, X GL(S)) N SL(7) and dim Ce(H) = 14.
Every monomial of ¢g has H-weight 0; hence, ¢z € W1,

Polystability (Luna + Casimiro—Florentino). Based on Luna’s reduc-
tion, the closedness of the SL(7)-orbit of ¢g is equivalent to polystability for the
Cq(H)-action on WH . After conjugating inside the GL(2)- and GL(3)-blocks,
any A € Y(Cg(H)) may be taken with

wt(mo,...,x(;):(a,s—i—u,s—u, 6,’}/+U1,’Y+U2,’7+U3>7
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where «, 3, s,u,7v,v; € Z, v1 + vo +v3 = 0, and
S=a+pf+2s5+3y=0

is the SL-constraint fixed in Convention 4.6. Let w(-) be the weight of a mono-
mial. A direct computation yields the positive linear identity

6
Z (w(x%xj) + w(x3w;) + 2 w(wlxng)) + 3w(zoz?) + 3w(wox?) + 3w(wox?)

j=4
+w(zoraws) + w(worae) + w(ToTs26) + 4w (23) = 128.

(8)

If A € Ay,, then all the above weights are > 0 and S = 0; therefore, by (8) they
must all vanish. Solving gives

=0, v1=vo=v3=0, u=0, 2s+v=0, a+2y=0.
Putting s = k € Z, we obtain
pn(t) = diag (8%, ¢%, 5, 1,728 472 e72) 0 Ay = {u | k € ZY U {0},

which is symmetric. Hence, by the Casimiro—Florentino criterion, ¢g is polystable.

Normal form and component dimension. On the H-fixed subspace

wi = Sym2<x1, x2) ® (T4, 5,26) B To® Sym2<x47m5,x6> D <35§>a
%) (11) (I11)

use GL(3) on (x4, x5, 26) to diagonalize the quadratic, then the left /right actions
on Sym?(z1, x2) ® (4, T5, 26) to diagonalize the 3 x 3 block (SVD-type reduction
under left Sym?*GL(2) and right O(U, q), here U = (x4, z5,2z¢) and ¢ = 23 +
23 + 2% ) and normalize one diagonal entry to 1; the remaining two appear as
parameters p,o. A normal form is

2(p,0) = Titroritaori+roritairytprirers+o riTe, (p,o) € (C*)2.

As dim WH = 16 and the effective action has dimension 13 (after projectivizing),
the closed component has dimension 16 — 13 — 1 = 2.

Remark 4.7. Here O(U, q) denotes the orthogonal group of the quadratic space
(U,q), i.e. O(U,q) ={ge€ GLU) | q(gu) = q(u) Yu € U}. In the chosen basis
U = (w4, 75,76) with ¢ =13+ 2 + 22, thisis {B€ GL3 | BB =13 }.

The residual T-stabilizer is finite; hence, the corresponding component ®g
of the moduli is two-dimensional.
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4.9 Case k=9
1-PS limit. Set

Ao(t) = diag(t?, t*, 1, 1, ¢, ¢4, t7?), t € Gyy.
For a generic fy as in Section 3, the 1-PS limit is

. 3 2 2 3
Qg := }m% Ao(t) - fo = ar1x5 + asx3x3 + azxaxs + agxy
—

2 2

+ asroxy + agT1Ty + A7ToT4T5 + ART1T4T5
2 2

+ agroxy + a10x1;

+ a11T0X2T6 + A12T1T2X6 + A13T0XT3T6 + A14T1T3X6.-
(All monomials have H-weight 0.)

H and Cg(H). Let H= X\g(G,,). The H-weights on (zy, ..., xzs) are (2,2,0,0,—1,—1,—2)
with block decomposition (zg, 1), (x2,x3), (x4, 25), (xs). Hence,

Ca(H) = { ADB&C@y: A,B,C € GL(2), 7 € Gy, det(4) det(B) det(C)y = 1 |

=~ (GL(2)? x Gy,,) NSL(7).

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢g is equivalent to polystability for the Co(H)-
action on the H-fixed locus. After conjugating inside each GL(2)-block, any
A € Y(Cg(H)) may be taken with

wt(xo, ..., 2z6) = (a+u, a—u, b+v, b—v, ctw, c—w, d), S = 2a+2b+2c+d = 0.
A direct computation yields the positive linear identity
[w(@3) +w(a3zs) + w(zaa3) + w(z3)]

+ 2[w(zoa}) + w(zowazs) + w(zoxs) + w(wi23) + w(212475) + w(2127)]

+ 3[w(m0x2x6) + w(z1x226) + W(T0T3TE) + w(xlxgxﬁ)] =125. 9)

If X € Ay, then all the above weights are > 0 and S = 0; hence, by (9) they all
vanish. Solving gives

b=v=u=w=0, a+2c=0, a+d=0.
Writing a = 2k with k € Z we obtain
pus(t) o= diag(t?*, ¢, 1, 1, ¢7F, ¢7F ¢72F), Ay, = {px | k € Z} U{0}.

Thus Ay, is symmetric, and by the Casimiro—Florentino criterion ¢y is polystable;
in particular SL(7) - ¢ is closed.
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Normal form and component dimension. From now on, we normalize
coefficients under the Cg(H)-action. Decompose

wH = Sym3<z2,x3> @ (xg,r1) ® Sym2<:c4,x5> D (xo,x1) ® (T2, 23) ® (x6) .
M (ID) (T11)

(I) Binary cubic Sym®(zs,23) A general element is GL((za, 23))-equivalent
(up to overall scaling) to

T3x3 4+ T T275 (r € CX),
leaving one parameter 7.
(I1) (zo, 1) ®@Sym?* (x4, x5) (2x 3 block) Via the right GL({x4, z5)) (through
Symz) diagonalize a reference quadratic to ¢ = 2% +z2; the residual right group
is O(U,q) on U = (x4, x5). Using the left GL({xo, 1)) together with this right

orthogonal action (an SVD-type reduction), eliminate the z4xs cross term and
equalize the 23 entries. After central torus/projective scalings,

wo(af + pad) +a(a] +23),  peCx.
(TII) (x0, 1) ® (x2,23) ® (x6) (2 X 2 block) With GL({xg, 1)), GL({z2,x3))
(respecting the choice in (I)), and scaling zg, we diagonalize to
ToT2Te + T1T3%6,
and normalize the coefficients to 1.
Combining the three steps yields the normal form
gogf(T, p) = Tix3+T woxA+ 0TI +p ToTE4 L1 T4 T 1 TEd LT 2T +T 1 X376, (T, p) € (CX)2.

As dimWH# = 16 and dim Cg(H) = 14, the effective action has dimension 13;
after projectivizing, we obtain 16 —13—1 = 2. The residual T-stabilizer is finite;
hence, the corresponding component ®g of the moduli is two-dimensional.

4.10 Case k=10
1-PS limit. Set
Ao(t) = diag(t?, ¢, 1, 1, ¢! ¢ 1), t € Gyy.
For a generic fig as in Section 3, the 1-PS limit is
P10 1= }gl(l) Ao(t) - fi0 = alzg + agxgzg + a3x2z§ + a4x§

+ a52122T4 + 0621T3T4 + A8T1T2T5 + A9T1T3X5
+ a1221T2%6 + A13X1T3T6

2 2 2
+ arxoxy + a10T0T4T5 + A11T0T5 + A14T0T4T6 + A15L0T5L6 + A16L0Tg-
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H and Cg(H). Let H= A\y(G,,). The H-weights on (x, ..., z6) are (2,1,0,0,—1,—1,—1)

with block multiplicities (1,1,2,3); hence,

(k@ﬂz{&%mﬂmmym@A@B:mBGQmAeGMm,BeGM%cﬁ@W@@W&:l}
= (G x Gy, x GL(2) x GL(3)) N SL(7). (10)

Every monomial of ¢19 has H-weight 0, so ¢19 € WH.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢1¢ is equivalent to polystability for the C (H)-
action on WH. After conjugating within the GL(2)- and GL(3)-blocks, any
A € Y(Cg(H)) may be taken as

Wt(mOa"'7x6):(a7 575+Ua5—U7’Y+Ula’Y+U27’Y+U3)7

where «, 8, s,u,7v,v; € Z with v; + v + v3 = 0, and by Convention 4.6 the
SL-constraint is
S=a+pf+2s+3y=0.

A direct computation gives the positive linear identity
[w(a3) +w(wizs) + w(zew3) +w(ag)]
+ 2[w(z02]) + w(zozazrs) + w(xo22) + W(T0zaT6) + W(ToT5T6) + W(T0TF)]

+ 2[w(z1z224) + w(T12374) + W(T12275) + W(T1T3T5) + W(T1T276) + W(T1T376)] = 125,
(11)
If A € Ay,,, then all the weights above are > 0 and S = 0; hence, by (11), they
all vanish. Solving yields

B = -, s=0, u =0, v = vg = vz =0, a = —2v.
Writing v = —k with k& € Z we obtain
() = diag(#2, 15,1, 1,675, 675, 65), Mgy, = {u | € Z}U{O).

Thus Ay, is symmetric, and by the Casimiro-Florentino criterion, ¢1¢ is polystable;
in particular SL(7) - ¢1¢ is closed.

Normal form and component dimension. We decompose the H-fixed lo-
cus as

wH = Sym3<x2,x3> @ 1 ® (T2,23) ® (XT4,x5,T6) B To® Sym2<x4,m5,m6> .

@ (I (I1D)

We normalize coefficients block by block under the Cq(H)-action.
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(I) Binary cubic Sym®(z,,23) Using GL({z2,23)) and overall scaling, a gen-
eral binary cubic is equivalent to

T3x3 4+ T 273 (r € CX),

which fixes one modulus 7.

(III) Three-variable quadratic zo®Sym?® (x4, x5, z6) Acting by GL((x4, x5, z6))
on the Sym?-representation, a nondegenerate quadratic form can be diagonal-
ized to the identity. Using the central torus and projective scaling, we normalize
the coefficients to 1:

xoxi + moxg + xoxg.

After this step, the residual right action is the isometry group of the diagonal
form (orthogonal group).

(II) The 2 x 3 block z1 ® (z2,23) ® (x4,25,26) The coeflicients in this
block can be arranged as a 2 x 3 matrix M. After (III), the right group is
the isometry group of the diagonal quadratic on (x4, x5, xs), and the left group
is GL({xq, z3)). For a general element (rank M = 2), a simultaneous (left GL(2),
right isometry) SVD-type reduction yields

1 0 0
M ~ = T1T2T4 + PT1T3T5,
0 p O

where p € C*. Here, the cross terms are eliminated by the right isometry,
column choices are coordinated by the left action, and the remaining nonzero
entries are scaled to the displayed normal form.

Combining (I)-(III), the convenient normal form for Case k = 10 is
(7, p) = a3 +T 2w+ w03 F o ToTE T Ty +p T T3T5, (T, p) € (CX)2

As dim WH = 16 and dim Cg(H) = 14, the effective action has dimension 13;
after projectivizing, we obtain 16 —13—1 = 2. The residual T-stabilizer is finite;
hence, the corresponding component ®1g of the moduli is two-dimensional.

4.11 Case k=11
1-PS limit. Set
A1 (t) = diag(t?, 1,1, 1,1, 71, ¢71), t € G-
For a generic f1; as in Section 3, the 1-PS limit is
o1 = tlgr(l) Mi(t) - fi1 = arad + apxizy + azw 23 + agxh + asrics + agrixexs + arrivs
+ agxlxg + agxgxg + aloxg + aumfm + a12212224
+ a13x§x4 + 14217324 + A15X2T324 + a16$;2»,l‘4
+ a17x1xi + algmgxi + algl‘gl'i + aQOmi

2 2
=+ a21x0x5 + a22L0T5Le + CL23£C0£L'6.
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H and Cg(H). Let H= A\1(G,,). The H-weights on (x, . .., z¢) are (2,0,0,0,0,—1, —1)
with multiplicities (1,4, 2); hence,

Co(H) = { diag(a) ®AG B : a € G, A€ GL4), B € GL(2), a det(A)det(B) = 1 }
> (G, x GL(4) x GL(2)) N SL(7). (12)

Every monomial of ¢1; has H-weight 0, so ¢1; € WH.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the

closedness of the SL(7)-orbit of ¢1; is equivalent to polystability for the Cq (H)-

action on WH. After conjugating inside the GL(4)- and GL(2)-blocks, any
A € Y(Ce(H)) may be taken with

wt(xo,...,26) = (o, S1, S2, S3, S4, t+u, t—u), S = a+(s1+S2+83+84)+2t =0

(Convention 4.6). Summing the A-weights of the 20 cubic monomials in x1, ..., x4
gives 15(s1 + s2 + s3 + s4), while

w(zor?) + w(zorsrs) + w(rerd) = 3a + 6t.
Hence, the positive linear identity

Z w + 5[w(zori) + w(zorsws) + w(zwezg)] = 155,  (13)

20 cubics in z1,...,24

If X\ € Ay,,, then all weights on the left are > 0 and S = 0; by (13) they all
vanish. From the cubic part, we obtain s; = so = s3 = s4 = 0, and from the
xo-part, we get u = 0 and o + 2t = 0. Thus, writing ¢t = —k with k € Z,

,Uk(t) = diag(t2k’ 1a 17 17 17 tika tik)a A¢11 = {:U‘k | ke Z} U {O}
Therefore Ay,, is symmetric, and by the Casimiro—Florentino criterion, ¢1; is
polystable; in particular, SL(7) - ¢11 is closed.

Normal form and component dimension. We work under the Cg(H)-
action and normalize coefficients block by block on the H-fixed locus
WH = Sym®(z1, 20, 23, 24) @ o ® Sym?*(zs, z6) .

@ (1D

(IT) The binary quadratic block zy ® Sym?(zs5,z6) Via the right action
of GL({x5,x6)) (through the Sym*-representation), a nondegenerate quadratic
form can be diagonalized. Using the central torus and projective scaling, we
normalize the coefficients to 1, obtaining

xoscg + xozg.

After this step, the remaining right symmetry is the isometry group of the
diagonal form (orthogonal group).
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(I) The quaternary cubic block Sym®(z;, 2o, 23, 24) Consider the symmet-

ric 3-tensor of coefficients of a general quaternary cubic. Acting by GL({x1, z2,23,24))
and an overall projective scaling, we choose a convenient slice that retains three

pure cubes with unit coefficients, allow the fourth pure cube to retain a param-

eter, and reduces mixed terms to two representatives. Specifically, by suitable
linear changes of variables, followed by rescaling within the stabilizer of the
diagonal part, we arrive at

m?+x§+x§+7mi+px1x2x3+ox1x2x4, (1,p,0 € C¥).

All other mixed monomials can be eliminated by the remaining GL(4)-freedom
preserving this slice, while 7, p, 0 remain as genuine moduli.

Combining (I) and (II), we obtain the convenient normal form for Case k = 11:
nf _ 3..3, .3 3 2 2 x\3
011 (1, p,0) = x{+x5+T5+T T+ T1T2T3+0 T1TaTsFToTs+Toxg, (T, p,0) € (CF)°.

As dimWH# = 23 and dim Cq(H) = 20, the effective action has dimension 19;
after projectivizing, we obtain 23 —19—1 = 3. The residual T'-stabilizer is finite;
hence, the corresponding component ®11 of the moduli is three-dimensional.

4.12 Case k£ =12
1-PS limit. Set

Mo (t) = diag(t®, ¢2, ¢, ¢, ¢ 1, 72, ¢4, t € Gp,.
For a generic f12 as in Section 3, the 1-PS limit is

: 2 2 2 2
P12 = 711rr(1) A2(t)-fi2 = a1x125 0220505 +a30223T5+ 040505+ A5 L0 T4 L5 +A6 LT X6 F+A7ToT2L6+A3TOT L6
—

H and Cg(H). Let H = A\12(G,y,). The H-weights on (xo, . .., xg) are (3,2,1,1,—1, -2, —4)
with multiplicities (1,1,2,1,1,1); hence,

Ca(H) = { diag(a) © diag(8) ® A © diag(7,6,) © ,B,7,6,¢ € Gy, A € GL(2),

B det(A)yde = 1 } > (G5, x GL(2)) NSL(7),  dim Cu(H) = 8.
(14)

Every monomial of ¢12 has H-weight 0.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢12 is equivalent to polystability for the Cq(H)-
action on W# . After conjugating inside the GL(2)-block on (w3, z3), any A €
Y (Cg(H)) may be taken with

wt(zo,...,x6) = (o, B, s+u, s—u, v, 0, €), S:=a+p+2s+7+5+ec=0.

27



A direct computation yields the positive identity

2w(x123) + w(zies) + w(rexsas) + 2w(xias) + 2w(zorszs) + 2w(2ixe)
+ 3w(zoxazs) + w(Tor3Ts) = 6S. (15)

If X € Ay,,, then all the weights on the left are > 0 and S = 0; by (15) they all
vanish. Solving gives

u =0, B =—2v, 0 = —2s, e=—20 =4, a=—3v, 5= —".
Writing k = —v € Z, we obtain
pn(t) = diag(t®*, 2%, 5 5 7k R ) Ay, = {ue | k€ Z} U {0},

Thus Ay, is symmetric, and by the Casimiro—Florentino criterion ¢15 is polystable;
in particular, SL(7) - ¢12 is closed.

Normal form and component dimension. Work on the H-fixed slice

W =z ® Sym2<x4> @ Sym2<5€27$3> Qx5 B To® (T4) @ T5 B Sym2<$1> ® xg
M () (1) ()

© o ® (r2,23) ® 76 -

V)

as above. Proceed as follows.

Diagonalize the ternary quadratic in the (II)-block. Using GL({x2, z3)),
bring Sym2 (w2, 23) ®@ x5 to 2375 + x§x5; the cross term xox3xs is eliminated.

Align the (V)-block. Within zp ® (x2,z3) ® x¢, use the same GL(2) to align
this block to xgxaz6 (so the xgx3zxze entry vanishes).

Normalize coefficients by torus scalings and projective scaling (I),(III),(V).
Use the 1-dimensional tori on the 1-dimensional weight spaces and the overall
projective scaling to set the remaining nonzero coefficients to 1.

This yields the closed orbit normal form

Pl = 2103 + 23xs + 23w + Towas + wwe + TowaTs.
Finally, dim W# = 8 and dim Cg(H) = 8; the effective action has dimension 7

(with H acting trivially). After projectivizing, we obtain 8 — 7 — 1 = 0; hence,
the corresponding boundary component is zero-dimensional.
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4.13 Case k£ =13
1-PS limit. Set

Ai3(t) = diag(t?, ¢, ¢, 1, 71 ¢t ¢72), t € Gp.
For a generic fi3 as in Section 3, the 1-PS limit is
¢13 == }gl(l) AMs(t) - fis = @123 + as®12324 + A3T2T3T4 + AUToT] + A5T1T3T5 + A6T2T3T5
+ arroraxs + agacoxg + agx%xf; + a10r1T276 + allxgxg + a12T9T3T6.
This is H-fixed for H = A\13(G,,).

H and Cg(H). The H-weights on {(xq,...,zs) are (2,1,1,0,—1, -1, —2) with
blocks (o) ® (1, x2) B (x3) B (x4, z5) D (x¢). Hence,

Ca(H) = { diag(a) @ A ® diag(8) ® B ® diag(+): a.5,7 € G, A, B € GL(2),

a det(A) 5 det(B)y =1 }

=~ (G, x GL(2) X Gy, x GL(2) x Gyy,) NSL(7), dim Ce(H) = 10.
(16)

Each monomial of ¢13 has H-weight 0.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢13 is equivalent to polystability for the Cq(H)-
action on WH . After conjugating within the two GL(2)-blocks, any A € Y (Cg(H))
may be taken as

wt(zo, ..., 2x6) = (@, s+u, s—u, B, t+v, t—v, ), S := a+2s+8+2t+v = 0 (Convention 4.6).
A direct computation yields the positive identity

[w(2izg) + w(aiws) + 2w(zi@2w6)] + [w(xex]) + 2w(Tewazs) + w(Tew?)]

+ [w(z1x3x4) + w(zoxsry) + w(r12375) + w(x2z3x5)] + 2w(zoxsxs) = 6S.
(17)

If A € Ay,,, then the twelve weights on the left are > 0 and S = 0; hence, they
all vanish. Solving gives

u=0, v=0, a+2t=0, 2s+v=0, s+p+t=0, a+pf+v=0.
Writing s = k € Z yields
(a,s,B,t,7) = (2k, k, 0, —k, —2k), pe(t) := diag(t?*, %, ¢k, 1, 478 ¢k 172,
so Ay, = {p | k € Z}U{0} is symmetric; by the Casimiro—Florentino criterion

@13 is polystable; hence, SL(7) - ¢13 is closed.
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Normal form and component dimension. We display

WH = Sym®(z3) @ zo® Sym? (x4, 25) @ (21, 22) @ (x4, 75) @ (x3)
—_———
(D (I1) (III)
& Sym*(z1,22) ® (T6) B To ® (T3) ® T6 -

(Iv) V)

Normalize block by block under the Cg(H)-action:
(I1) 2o ® Sym? (x4, x5): diagonalize the binary quadratic to zgz3 + zoz?2.

(III) (x1,22) ® (x4,25) @ (x3): view the four xz-bilinear terms as a 2 x 2
matrix on (x1,x2) ® (x4, x5) and bring it to diagonal form, x1x3x4 + p T2x325,
with p € C*.

(IV) Sym?(z1,z5) ® (x6): diagonalize the symmetric 2 x 2 form to z3z¢ +
o x3w6, with o € CX.

(I)(V) Use the three torus factors on xg, 23, xg together with projective scaling
to normalize the remaining nonzero coefficients to 1.
This yields the convenient normal form

f 2 2 2 2 2
O (p,0) = T3 tworidaoritr1 2324+ p To3T5 T IT6+0 TITEHT0T3T6, (P, 0) € (CF)

Here, dim(W#) = 12 and dim Cg(H) = 10; as H acts trivially, the effective
group dimension is 9. After projectivizing, we obtain 12 — 9 — 1 = 2. The
residual T-stabilizer is finite; hence, the corresponding component ®13 of the
moduli is two-dimensional.

4.14 Case k=14
1-PS limit. Set

Aa(t) = diag(t?, ¢, 1, 71 7 7 ), t € G-
For a generic f14 as in Section 3, the 1-PS limit is

. 3 2 2 2 2
¢14 = thII(l) Aa(t) - f1a = a125 + A2XoT3 + A3T1T3 + A4X0T3T4 + A5T1X3T4 + AgToTy + A7X1TYy
-

2 2
+ agTox3T5 + A9X1T3T5 + A10T0T4T5 + A11T1T4T5 + A12T0T5 + A13T1T5
+ 414T0T3%6 + A1501T3T6 + A16T0T4T6 + A17T1T4T6

2 2
+ 180T 5L6 + a19T1T5TL6 + a20ToTg + a21T1Tg-
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H and Cg(H). Let H= A\4(G,,). The H-weights on (x, ..., z¢) are (2,2,0,—1, -1, -1, —1)

with block multiplicities (2,1,4). Hence,

Ce(H) {A ®B@®B: AcGL(2), BE Gy, BeGLA4), det(A)f det(B) =1 }

>~ (GL(2) x Gy, x GL(4)) NSL(7),  dimCg(H) = 20.
Every monomial of ¢4 has H-weight 0; hence, ¢4 € WH.
Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢14 is equivalent to polystability for the C (H)-

action on WH. After conjugating inside the GL(2)- and GL(4)-blocks, any
A € Y(Cg(H)) may be taken with

wt(zg,...,26) = (a+u, a —u, b, c+ vy, ¢+ v9, c+ v3, ¢+ v4),
where v1 + v9 + v3 + v4 = 0, and with the SL-constraint (Convention 4.6)
S:=2a+b+4c=0.

A direct computation yields the positive identity

6
Z(w(xox?) + w(xlm?)) +3 Z (w(zow;zj) + w(zizix;)) + 10w(23) = 308.
j=3 3<i<j<6
(18)
If A € Ag,,, then all 21 weights are > 0 and S = 0; hence, by (18) they all
vanish. Solving gives

b=0, u=0, vy =vy =v3 =v4 =0, a+2c=0.
Writing ¢ = —k with k € Z, we obtain
() = diag(t®*, 2%, 1, ¢ 7% 07 %) Ay, = {me | k € Z} U {0}

Thus Ay, , is symmetric, and by the Casimiro—Florentino criterion ¢14 is polystable;
in particular SL(7) - ¢14 is closed.

Normal form and component dimension. We display W# in block form:

wh = Sym3<ac2> @ (x9) ® Sym2<m3,x4,x5,x6> D (r1) ® Sym2<x3,w4, X5, Tg) -
—_———
(5] (I1) (11I)

Write the quadratic part in (z3, 24, x5, Z6) as a pencil

7o Qo(w3, 74,75, 76) + 71 Q1(T3, T4, T5, T6)-
Acting by GL({x3,x4,x5,26)) = GL(4) we take Qg to the identity. Using the
residual orthogonal group on the right and the GL({xzq, z1))-action on the left,
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together with central torus and projective scalings, the pencil is diagonalized to
a one parameter form. A convenient normal form is

@?Z(T):xg + xo(xg,—i—xi—i—xg—l—xé) + xl(xg—&—Txi—l—xg—&—w%), T e C*.

As dimWH# = 21 and dim Cq(H) = 20, the effective action has dimension 19;
after projectivizing we obtain 21 —19—1 = 1. The residual T-stabilizer is finite;
hence, the corresponding component ®14 of the moduli is one-dimensional.

4.15 Case k=15
1-PS limit. Set
Ai5(t) = diag(t?, t, ¢, 1, 1, t72,t72),  t € G
For a generic f15 as in Section 3, the 1-PS limit is
P15 1= 711_{% Ai5(t) - f15 = alxg + a2x§x4 + agmgxﬁ + a4xi + a5x?x5 + agr1x2x5 + a7x§x5

2 2
+ agror3xs + agToT4Ts + A10TITe + A11T1T2T6 + A12X5T6

+ a13T0T3T6 + A14T0T4T6-
All monomials have H-weight 0, so ¢15 € WH for H = A\15(G,y,).

H and Cg(H). The H-weights on (xq,...,zs) are (2,1,1,0,0, -2, —2) with
block decomposition {xo) @ (x1,z2) D (x3,x4) ® (rs5,x6). Hence,

Co(H) = {diag(a) DADBBC: a€ G, A B,CeGL2), adet(A)det(B)det(C) = 1 }
=~ (G, x GL(2) x GL(2) x GL(2)) N SL(7), dim Cq(H) = 12.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the

closedness of the SL(7)-orbit of ¢15 is equivalent to polystability for the Co(H)-

action on WH. After conjugating inside the three GL(2)-blocks, any A €
Y(Cq(H)) may be taken with

wt(xo,...,2z6) = (o, stu, s—u, t+v, t—v, y+w, y—w), S = a+2s5+2t+27 =0
A direct computation yields the positive identity
2[w () + w(zies) + w(wsal) + w(zd)] + 3 [(w(z%xg;) + 2w (21 2225) + w(T525))

+ (w(aize) + 2w(z1m2w6) + w(mg%))]

+ 6[w(x0m3x5) + w(xoxaxs) + w(zorsxe) + w(x0x4x6)] = 245.
(19)

If X € Ay,,, then all 14 weights above are > 0 and S = 0; hence, by (19) they
all vanish. Solving gives

u=0 v=0, w=0 t=0, a+v=0, 2s+~v=0.
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Writing s = k € Z we obtain
i (t) = diag(t™, ¢*, %, 1, 1, ¢72%, 07%%), Ay, = {u | k € Z}y U {0}

Thus Ag,, is symmetric; by the Casimiro-Florentino criterion ¢15 is polystable,
so SL(7) - ¢15 is closed.

Normal form and component dimension. We have

WH = Sym®(zs,24) & (Sym*(z1,22)) ® (x5, 76) & o ® (23, 74) ® (T5,76),
(0 (11) (I1I)

of respective dimensions 4, 6, and 4 (total dim WH = 14).

Reduction to normal form. We now normalize 15 under the action of
Cq(H) on WH using only: (i) the left GL(2) on (x5, 24), (ii) the left Sym*GL(2)
on Sym? (1, zs), (i) the right GL(2) on (x5, x), (iv) diagonal tori (subject to
det = 1) and projective rescaling. We proceed block by block.

(I) The binary cubic block Sym®(z3,24). A general binary cubic is GL(2)-
equivalent (after one overall scalar) to

riry + T X323, T € CX,

which fixes the Sym®-part up to the single modulus 7.

(III) The bilinear 2 x 2 block zy ® (z3,2z4) ® (x5, z6). Write this part as
xo (23, 74) M (5, 76)" With M € Myy,. Using the left GL(2) action on (z3,x4)
and the right GL(2) action on (z5,2s) (an SVD-type reduction), we bring M
to the identity; a diagonal torus and projective rescaling normalize the two
coefficients to 1:

ToXL3T5 + ToT4ZLg.-

(IT) The 3 x 2 block (Sym*(z1,72)) ® (z5,76). Choose bases {2?, z122, 23}
and {x5,2¢}. The left action of Sym?GL(2) on Sym?(z1,z5) together with the
right action of GL(2) on (x5, x¢) allows a simultaneous reduction that eliminates
the mixed z1zo row and diagonalizes the remaining two rows. After using
diagonal tori and an overall scale, we obtain

xirs + prive, peC*.
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Normal form. Hence, a closed-orbit representative is

PIS(T,p) = a3 + Tasx] + wowsas + woxazs + 2iws + priTe, (r,p) € (C)*.
(20)

For general (7, p) the residual stabilizer in Cq(H) is finite, so the parameters

(7, p) record genuine moduli on the closed stratum.

Component dimension. By Convention 4.6, the component dimension is
dim(component) =dimWH" — dimeﬂ(CG(H)) — 1.

Here dim W# = 14 and dim Cg(H) = 12. As H ~ G,,, C Cg(H) acts trivially
on WH by construction, the effective group acting on W# is Cg(H)/H, of
dimension 11. Therefore the corresponding component ®,5 of the moduli is
two-dimensional.

4.16 Case k=16
1-PS limit. Set

Ai6(t) = diag(t?, ¢, 1,1, 1, ¢, t7?), t € Gy,.
For a generic fi4 as in Section 3, the 1-PS limit is
@16 := }5% Ai6(t) - fi6 = @125 + apwirs + azwoxs + asxs + asriry + agTox3T4 + A7TETY

2 2 3
+ agxroxy + agr3xy + 10Ty + A11X1T2T5 + A12T1X3T5 + G13T1T4X5

2 2
+ CL141‘0£C5 + a15T1Te + A16T0T 2L + a17Tx0I3L6 + 180T 4LG-

monomials have H-weight 0, so ¢16 € or H = \g(G,,).
All ials h H-weight 0 10} WH for H= \4(G

H and Cg(H). The H-weights on (xq,...,zs) are (2,1,0,0,0,—1,—2) with
block decomposition {xo) @ (1) B (x2, z3, 4) D (x5) ® (x6). Hence,

Co(H) { diag(a) @ diag(8) & B @ diag(s) @ diag(c) : a, 8,0, € G, B € GL(3),
af det(B)de =1 }

=~ (G x G x GL(3) X Gy, x Gyy,) NSL(7), dim Cq(H) = 12.
Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢14 is equivalent to polystability for the Co(H)-
action on WH. After conjugating within the GL(3)-block on (z2,x3,z4), any
A € Y(Ce(H)) may be taken with

wt(zo,...,26) = (o, B, ¢+ v1, c +v2, c+ v3, 0, €), v1 + vy +v3 =0,
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and, by Convention 4.6, with the SL-constraint
S=a+pF+3c+d5+e=0.

Writing w(-) for the A-weight of a monomial, a direct calculation yields the
positive identity

Z w + 6w(zers) + 6w(xirs)
10 cubics in x2,x3,24 (21)

+ 2w(zozaws) + w(Torsxs) + w(woxsas) = 12.5.

If A € Ay, then all 18 weights on the left are > 0 and S = 0; hence, by (21)
they all vanish. From the ten cubics, we obtain

c=0, v, = v = vz =0,
and from the remaining terms
a+26 =0, 26 +¢e=0, a+e=0.
Thus a =28, § = —f3, ¢ = —28. Writing 8 =k € Z gives
p(t) = diag(t?*, %, 1, 1, 1, 7%, ¢72%) Ay = {me | k € Z} U {0}.

As Ay, is symmetric, ¢ is polystable by the Casimiro—-Florentino criterion; in
particular, SL(7) - ¢16 is closed.

Normal form and component dimension. On the H-fixed slice we have
the block decomposition

WH = Sym?® (29, 23, 24) © 1 @ (22,23, 74) ® 25 O (2072) O (2w6) © T0 @ (22,23, T4) @ T -
S~—— ~——

@ (1) (I11) Iv) V)

The centralizer acts by GL({x2, x3,x4)) on the three-space (x2, 3, x4) and by in-
dependent diagonal tori on xg, z1, x5, g (subject to the determinant constraint).
We normalize block-wise as follows.

(IT)(V) The - and zo-bilinear 3-vectors.  The (II)-block is a 3-vector
of coefficients of {z1xow5, x12325, T12425} and the (V)-block is a 3-vector for
{zowome, T0T3T6, ToTsxs}. For a generic element, these two vectors are linearly
independent in (z3,x3,74)"; hence, a single change of basis in GL({z2, %3, 74))
sends them to the coordinate vectors es and e3. Using the x1, z5- and zq, z¢-tori
(together with overall scaling), we normalize the surviving entries to 1:

(II) ~ T1X2T5, (V) ~ XToT3xg-
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(III)(IV) The one-dimensional blocks. By the zy- and z;-tori we also
normalize
(IT1) ~ zox2, (IV) ~ 2ixe.

(I) The ternary cubic on (z3,x3,24). After fixing the basis in (a), the
residual GL({x2, z3,24)) action and the diagonal tori allow us to reduce a gen-
eral ternary cubic in (I) to a convenient 6-parameter slice that preserves the
three pure cubes, the mixed term zox3x4, and three nearest-neighbour terms.
Altogether we arrive at the closed-orbit representative

@?é = x‘;+01x§+agxz+p :c21:3x4+:z:1x2x5+xox3z6+x0z§+x%x6+n a3+ x§x4+)\ T2y,
(22)
with (01,09, p, K, i1, A) € (C*) recording genuine moduli for a general member.
This normal form matches the one summarized for k = 16 in Table 2.
The H-fixed slice has

. H _
dim W+ = 10 + + + + 3
(v)

3 1 1 = 18.
@™ am - (1v)

The centralizer has dimension 12, and its H ~ G,,-factor acts trivially on W
Hence, the effective dimension of the action is 12 —1 = 11. After projectivizing,
the component dimension is therefore

18— 11—1=6,

in agreement with the six parameters in (22). Thus, the corresponding compo-
nent ®1¢4 of the moduli is six-dimensional.

4.17 Case k=17
1-PS limit. Set

Air(t) = diag(t, t, ¢, 1, 1, ¢, t72), t € Gy,.

For a generic fi7 as in Section 3, the 1-PS limit is

— 13 _ 3 2 2 3
P17 = tIEI(I) )\17(15) - fir = a1 25 + agx524 + az x32] + g 1y

+ a5 Tox3%5 + g T1X3T5 + A7 T2X3T5

+ ag Tol4xs + a9 X1X4T5 + a10 X2X4T5
2 2

+ a11 XpT6 + @12 ToT1T6 + Q13 T T

2
+ Q14 ToX2xs + A15 T1X2X6 + A16 T5X6-
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H and Cg(H). Let H= A\7(G,,). The H-weights on (x, ..., zs) are (1,1,1,0,0,—1, —2)

with block multiplicities (xg,x1,z2), (x3,24), (z5), (x). Thus

Ca(H) = {A @ B @ diag(v) @ diag(d) : A € GL(3), B € GL(2), 7,6 € Gy,
det(A) det(B)yd = 1 }
>~ (GL(3) x GL(2) x Gy, x Gy,) N SL(7).

Each monomial of ¢17 has H-weight 0. Moreover, dim Cq(H) = 14.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢17 is equivalent to polystability for the Co(H)-
action on the H-fixed subspace. After conjugating inside the GL(3)- and GL(2)-
blocks, any A\ € Y(Cg(H)) may be taken with

wt(xo,...,26) = (@ +uy, a+u, a+us, b+v,b—wv,¢,d), up+us+uz=0,
and the SL(7)-condition (Convention 4.6)

S:=3a+2b+c+d=0.
A direct calculation yields the positive linear identity

[w(mg) + w(23zs) + wlzsz]) + w(z)]
[ (xorsxs) + w(x1zsxs) + w(xawsxs) + w(xeraxs) + w(x1Taxs) + w(x2x4m5)]
[ (z5w6) + w(zow136) + w(ziws) + w(wozaws) + w(w12226) + W(2326)]
=128 (23)

If A € Ag,,, then all 16 monomial weights are > 0 and S = 0; by (23) they must
all vanish. Solving gives

b=0, v=0, wui=ups=uz3=0, c¢c=-a, d=—2a.
Writing a = k (k € Z) yields
Agir = {un [k € ZYU {0}, pp(t) = diag(th, %, %, 1,1, ¢7F, ¢72F).

Thus, Ag,, is symmetric, and by the Casimiro-Florentino criterion, ¢q7 is
polystable; in particular, SL(7) - ¢17 is closed.

Normal form and component dimension. On the H-fixed slice

wH = Sym3<x3,x4> @ (ro,x1,T2) ® (T3,24) @ T5 D Sym2<x0,x1,x2> ® g,
M (I1) (111)

of total dimension 4 + 6 + 6 = 16.
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(ITI) The quadratic block Sym2<m0,x1,x2> ® xg. By the GLs-action, one
diagonalizes the ternary quadratic, and using diagonal tori together with pro-
jective rescaling, the coefficients of z3z¢ and 23z are normalized to 1, leaving

Tire + rive + prave, peCx.

Importantly, after the reduction of (II) below, the subgroup of GLj that pre-
serves (II) is block-diagonal on (xg,z1) @ (x2) (up to an O(2) on (zg,x1) and an
independent scaling on z5). Hence, the relative scale of x5 cannot be absorbed,
and the parameter p cannot be removed.

(IT) The 3 x 2 block (xg,z1, 22) ® (x3,24) ®x5. Using the left GL3 and right
GLy actions (an SVD-type reduction), a generic rank-2 element is brought to
diagonal form; scaling x5 then fixes the two nonzero entries to 1:

Tox3Ts + XT1X42T5.

(I) The binary cubic Sym®(x3,x4). Acting by GLy on (x3, x4) puts a general
binary cubic into a two-term form (sending three roots to {0,000, —7}), and a
residual diagonal scaling fixes the first coefficient to 1:

r3rs + Ta32, TeC*.
Collecting (I)-(III), we obtain the closed-orbit representative
nf

W7, p) = 23T +T T3T;FToT3T5 T Ty X5+ LTI T6+p T3 T, (1,p) € (C*)2.

Lastly, dim W# = 16 and dim C¢(H) = 14. Asthe H ~ G,,-factor acts triv-
ially on WH | the effective group dimension is 14 — 1 = 13. After projectivizing,
we get

dim(component) = dim W# — 13 — 1 = 2,

so (7, p) are the two genuine moduli of the closed stratum. Hence, the corre-
sponding component ®,7 of the moduli is two-dimensional.

4.18 Case k=18
1-PS limit. Set

Ais(t) = diag(t, ¢, 1, 1, 1, ¢4, t71), t € Gp.
For a generic fig as in Section 3, the 1-PS limit is
P18 = }gl(l) Mig(t) - fig = a1 @5 + ag T3x3 + a3 w3 + a4 Th + a5 T34 + a6 Tox3T4 + a7 TIT4

2 2 3
+ ag Taxy + ag T3xy + a10 Ty + a11 ToT2x5 + 12 T1T2T5 + A13 ToT3X5
+ 14 T1T3%5 + A15 ToT4T5 + Q16 T1T4T5 + A17 TeT2Te + A18 T1T2X6

+ @19 XoT3%6 + A20 T1T3T6 + A21 LT4T + A22 L1T4T6-
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H and Cg(H). Let H= A\3(G,,). The H-weights on (x, ..., z¢) are (1,1,0,0,0,—1, —1)
with block decomposition (zg,z1) ® (x2,x3, 24) ® (5, 6). Hence,

Coa(H) = {A ®B®C: AeGL(2), BeGL(®3), C e GL(©2),
det(A) det(B) det(C) = 1 }
=~ (GL(2) x GL(3) x GL(2)) N SL(7),
so dimCg(H) = 16. Each monomial of ¢35 has H-weight 0; hence, ¢1g is
H-fixed.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢15 is equivalent to polystability for the Cq(H)-
action on the H-fixed subspace. After conjugating within the three blocks, any
A € Y(Cg(H)) may be taken with

wt(zo,...,26) = (a+u, a —u, b+ vy, b+ vy, b+ v3, c+w, c —w),
where a, b, c,u,w,v; € Z, v + vo + v3 = 0, and the SL-constraint is
S:=2a+3b+2c=0

(Convention 4.6). Let w(-) denote the A-weight of a monomial. Then

> w = 30b,

all 10 cubics in z2, z3, x4

and

4 4
Z[w(xoxim5)+w(x1xix5)] = 6(a+b+ctw), Z[w(zoxix6)+w(x1xix6)] = 6(a+b+c—w).
i=2 =2

Hence, we have the positive linear identity

Z ] + 52 w(zox;xs5) + w(r1T; :c5)]

all 10 cubics in x2, 3, x4
+5 Z w(zozize) + w(T1226)] = 30S. (24)
If A € Ay, then all 22 monomial weights are > 0 and S = 0; by (24) they must
all vanish. Solving yields
b:O, 1}1:1)2:1)3:0, UZO, ’LU:O, Q+C:0.
Writing a = k (k € Z) gives
Ay = i [ K€ ZYU{0},  pup(t) = diag(th, ¢, 1, 1, 1, ¢7%, ¢7F).

Thus Ay, is symmetric, and by the Casimiro—Florentino criterion, ¢1g is polystable;
in particular SL(7) - ¢15 is closed.
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Normal form and component dimension. On the H-fixed slice
WH = Sym*(za, 23, 24) @ (w0, 1) ® (X2, 23,24) @ 5 & (20, 21) @ (T2, T3, T4) ® T,

(1) (1) (1)

of total dimension 22, the centralizer acts blockwise. We normalize a general
element as follows.

(I) The ternary cubic Sym3(x2,m3,x4>. Acting by GL3 on (z2,x3,24) and
using diagonal tori together with projective rescaling, we preserve three pure
cubes and a single mixed term:

3 + o1ai + o2af + praasry,  (01,02,p) € (CF)°.

(IT)(III) The two 2 x 3 blocks (xo, 1) ® (z2,23,24) ® x56. Using GL(2) on
(x0,1), GL(3) on (x3,x3,z4), and GL(2) on (x5,x6) (an SVD-type simultane-
ous reduction for the pair of blocks), we arrange a sparse diagonal shape and
then use diagonal tori/projective rescaling to fix three entries to 1, leaving three
genuine ratios. Concretely, we obtain

ToT2¥s + T1T3T5 + A XeT4T5 + ToTaZe + Br1T3T6 + ¥ T1T4Ts, (a, B,7) € (C*)°.
Collecting (I)-(III), a closed-orbit representative is
P1(01,02, 0,0, 8,7) = o5 + 0125 + 027 + prawsTs + ToT2Ts

+T12325 + A ToT4T5 + ToT2T6 + B T1T3T6 + Y T1T4T6,
with (01,09, p,a, B,7) € (C*)S.

Lastly, dim W# = 22 and dim Cg(H) = 16. As the factor H ~ G,, acts triv-
ially on WH | the effective group dimension is 16 — 1 = 15. After projectivizing
we obtain

dim(component) = dim W# — 15 — 1 = 6,

Hence, the corresponding component ®1g of the moduli is six-dimensional.

4.19 Case k=19
1-PS limit. Set
Ao(t) = diag(t?, ¢2, ¢%, 1, ¢ 1, 71 ¢4, t € G-
For a generic fi9 as in Section 3, the 1-PS limit is
b1g = th_r)r(l) Aio(t) - fro = a1 @3 + ag wox3 + a3 123 + a4 rox;

+ a5 TxT4T5 + A6 T1T4T5 + A7 ToX4 X5
+ ag xoa:§ + ag xlzg + aio argxg
+ a1y LT + a12 ToT1 T + a13 TG

2
+ a14 XoT2%e + A15 T1T2T6 + A16 T2T6-
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H and Cg(H). Let H= A\g(G,,). The H-weights on (x, ..., zs) are (2,2,2,0,—1,—1,—4)
with block decomposition

(o, 1,2) ® (23) D (T4, 75) B ().
Hence,
Co(H) = { A® diag(B) ® B ® diag(s) : A € GL(3), B € GL(2),
8,6 € G, det(A) B det(B)§ =1 }
=~ (GL(3) x GL(2) x Gy, x Gyy,) N SL(7),

so dim Cg(H) = 14. Each monomial of ¢19 has H-weight 0.
Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢19 is equivalent to polystability for the Co(H)-

action on the H-fixed subspace. After conjugating inside the blocks, any A €
Y(Ce(H)) may be taken with

wt(zo,...,26) = (s +u1, s +us, s+us, b, t+v, t —v, ¢,
where s,t,b,¢c,u;,v € Z, u3 + ug + uz = 0, and the SL(7)-condition (Conven-

tion 4.6) is
S:=3s+b+2t+c=0.

A direct computation yields the positive identity

2
Z {w(xlxi) +2 w(xiac4x5) + w(xlxg)}
=0

+2 [w(m%xg) +w(zozi26) + w(Tine) + w(Towaxs) + W(T1T26) + w(mgxg)}

+4w(xd) = 128. (25)

If X € Ag,,, then all 16 monomial weights are > 0 and S = 0; by (25) they must
all vanish. Solving gives

b=0, v=0, s+u.-+2t=0(r=123), 2s+c=0.

Using uy + uz + uz = 0 we obtain s + 2t = 0 and u; = us = ug = 0. Writing
s = 2k with k € Z yields

Ay, = {px | k € ZY U {0}, p(t) = diag(t?, 2%, 2% 1 ¢7F ¢F ¢,

Thus Ag,, is symmetric, and by the Casimiro-Florentino criterion ¢;g is polystable;
in particular SL(7) - ¢19 is closed.
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Normal form and component dimension. In the H-fixed subspace
WH = (23) @ (wo,21,29) ® Sym* (w4, 25) & Sym®(zo,x1,22) @ @5,

using GL(2) on (x4, z5) (via Sym?), GL(3) on (xg, x1,22), and torus scalings, a
generic element is brought to

f 2 2 2 2 2
1(p,0) = T3 + 2023 + T17475 + ToTE + TaT6 + TIT6 + pTITG + 0 ToT1 T,

with (p,0) € C*? general. As dimW# = 16 and dim Ce(H) = 14 (with H
acting trivially), the effective action has dimension 13; after projectivizing we
obtain

16 -13—-1=2.

The residual T-stabilizer is finite; hence, the corresponding component ®19 of
the moduli is two-dimensional.

4.20 Case k=20
1-PS limit. Set

Aoo(t) = diag(t, t, ¢, t, 1, t 72, t72), tEGy,.
For a generic fyp as in Section 3, the 1-PS limit is
Pog = tlgr(l) Moo (t) - fa0 = a1 @5 + ag Tixs + a3 ToT1T5 + Ay TIT5 + a5 ToT2T5 + A T1T2T5

2 2
+ a7 T3%5 + ag ToT3x5 + A9 T1X3T5 + G410 T2T3T5 + A11 T3T5

2 2
+ a12 T + A13 ToT1T6 + 14 T]T6 + A15 TpT2Te + A16 L1T2T6

2 2
+ a17 £5T6 + 18 ToX3Te + Q19 T1X3T6 + G20 T2X3T6 + A21 T3Xg.

H and Cg(H). Let H = A\y(Gyp,). The H-weights on (x, ..., xz6) are (1,1,1,1,0, -2, —2)
with block multiplicities (xq,x1,x2,x3), (x4), (x5, zs). Hence,

Co(H) = {A @ diag(8) © C: A€ GL(A4), € G, CeGL(2),
det(A) 8 det(C) = 1}
=~ (GL(4) x Gy, x GL(2)) NSL(7),

so dim Cg(H) = 20. Every monomial of ¢o9 has H-weight 0.

Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢a¢ is equivalent to polystability for the Cq(H)-
action on the H-fixed subspace. After conjugating inside the GL(4)- and GL(2)-
blocks, any A € Y (Cq(H)) may be taken with weights

wt(zo,...,x6) = (a4 uo, a4 u1, a+uz, a+us, b, c+w, c—w),
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where a,b, c,u;,w € Z, ug + uy + us + uz = 0, and, by Convention 4.6,
S:=4a+b+2c=0.

Let w(-) denote the A-weight of a monomial. Then

w(a}) = 3b,
w(zirs) = 2(a+u;) + ¢ +w, w(r?ze) =2(a+u) +e—w (i=0,1,2,3),
w(zzjrs) = 2a + (u; +uj) +c+w, w(rxjre) =2a+ (u; +u;) +c—w (0<i<j<3).

A direct computation yields the positive identity

3

3 Z [w(z?zs) + w(zize)] + 3 Z [w(ziz;zs5) + w(ziz;T6)]

i=0 0<i<j<3
+10w(23) = 308. (26)

If A € Ay,,, then all 21 monomial weights are > 0 and S = 0; by (26) they must
all vanish. Solving gives

b=0, w=0, 2(a+u;)+c=0(=0,1,2,3), 2a+(uit+u;)+c=0({<j),
Hence, up = u1 = us = uz = 0 and 2a + ¢ = 0. Writing a = k € Z yields
Agsy = i [ K € ZYU{0},  pup(t) = diag(th, ¥, %, ¢, 1, 672, ¢72F).

As Ay, is symmetric, ¢o9 is polystable by the Casimiro—Florentino criterion; in
particular, SL(7) - ¢o9 is closed.

Normal form and component dimension. We have

WH = <$£> D Sym2<m0,x1,x2,x3> ® <$5> S5 Sym2<x0,x1,x2,x3> ® <x6>7
(I (IT1) (T11)

so that dim WH = 21. The centralizer is
Cq(H)={ApBaC | A€ GL(4), B € Gy, C € GL(2), det(A)-B-det(C) =1}
~ (GL(4) x G, x GL(2)) N SL(7),

of dimension 20.
A general element of W# has the shape

¢ =axi +25Q5(x0, ..., 73) + 26Qo (w0, - -, 3), Qs,Q6 € Sym*(wo, ..., x3).
(II) Using GL(4), we diagonalize @5 into the identity quadratic form:
Qs ~ x3 + 27 + 23 + 23

This leaves an O(4) stabilizer.
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(IIT) With O(4) on (zy, ..., z3) and GL(2) on (x5, z6), the pencil 5Q5+26Q6
can be simultaneously diagonalized to

w528 + 23 + 23 + 23) + xg(xd + 722 + 23 +23), T€C*.

(I) Using the central G,,, we normalize a = 1.
Thus, the closed orbit representative is

bo(T) =z} + (2 + 21 + 23 + a3)xs + (xf + 72} + 23 + a3)wg, T€C*.

Component dimension. By Convention 4.6(5), the dimension of the com-
ponent is
dim(component) = dim W# — dim.g Ce(H) — 1.

Here dim WH = 21. As Cg(H) has dimension 20 but contains a one-dimensional
central torus acting trivially on W, the effective action has dimension 19.
Hence,

dim(component) =21 —19—-1=1,

which coincides with the free parameter 7. Hence, the corresponding component
®5 of the moduli is one-dimensional.

4.21 Case k=21
1-PS limit. Set

Ao1(t) = diag(t, t, 1,1, 1,1, t72), t € Gy,
For a generic fo; as in Section 3, the 1-PS limit is
P21 = %gr(l) o1 (t) - fo1 = a1 @3 + ag T3x3 + a3 w3 + ag Th + a5 34 + ag Tax3T4 + a7 TIT4

2 2 3 2 2
+ ag x2xy + ag x3xy + a10 Ty + A11 T3T5 + A12 T2X3T5 + A13 T3T5
2 2 2
“+ a4 T2X4T5 + A15 X3X 45 + aig TyTs + a17 T2y + @18 T3Txy

2 2 2
+ a19 X425 + azo xg + a21 ToTe + Q22 ToX1X6 + G23 TTT6.

H and Cg(H). Let H = A\31(G,y,). The H-weights on (xq, ..., z¢) are (1,1,0,0,0,0, —2)
with block multiplicities (zg,x1), (x2,Z3, T4, x5), {(xs). Thus

Co(H) = {A@ Badiag(y): Ae GL(2), B € GLA), v € G,
det(A) det(B)y = 1}
=~ (GL(2) x GL(4) x G,,) N SL(7),

so dim Cg(H) = 20. Every monomial of ¢, has H-weight 0.

44



Polystability (Luna + Casimiro—Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ¢91 is equivalent to polystability for the Cq(H)-
action on the H-fixed subspace. After conjugating inside the GL(2)- and GL(4)-
blocks, any A € Y(Cg(H)) may be taken with weights

wt(zo,...,26) = (a+u, a —u, b+ vy, b+ vy, b+ v3, b+ vy, ¢),
where a,b, ¢, u,v; € Z, v1 + vy + v3 + v4 = 0, and the SL(7)-constraint
S:=2a+4b+c=0.

Let w(-) denote the A-weight of a monomial. Summing the weights of the twenty
cubic monomials in s, x3, x4, T5 gives

w = 600,
all 20 cubics in @g, - - - , x5
while for the three zg-terms, we have
w(zize) = 2(a +u) + ¢, wxozrizs) =2a+¢, w(aixg) =2(a—u)+ec.
Hence, the positive linear identity
Z w] +5[w(zfzs) + w(zoz176) + W(Tize)] = 15 (2a + 4b + ¢) = 158.

all 20 cubics
(27)

If A € Ag,,, then all 23 monomial weights are > 0 and S = 0; by (27), they

must all vanish. From the cubic part, we get b = 0, and the nonnegativity of

w(z?) = 3(b+ v;) = 3v; together with Y v; = 0 gives v; = 0 for i = 1,...,4.

From the zg-part we obtain ¢ = —2a and u = 0. Writing a = k (k € Z) yields
A<l521 = {/j’k | ke Z} U {O}a ;u’k(t) = diag(tkv tkv ]-7 ]-7 11 13 t_2k> .

Thus Ag,, is symmetric, and by the Casimiro—Florentino criterion, ¢2; is polystable;
in particular, SL(7) - ¢2; is closed.
Normal form and component dimension. In the H-fixed subspace

WH = Sym3<172, T3,T4, ZE5> 2 Sym2<$0’ :C1> X T,

acting by GL(4) on (x2, z3,24,z5) and by GL(2) on (zg,x1) (together with the
central torus and projective scalings), a generic element is taken to

(ﬁgf(a7 T,p) = x%+aw§+7mi+x§+x2x3x4+m8x6 —ﬁ—px?mﬁ, (o,7,p) € ((CX)?’.

As dim WH = 23 and dim Cq(H) = 20 (with H acting trivially), the effective
action has dimension 19; after projectivizing, we obtain

23 —19—1=3,

so the corresponding closed component is three-dimensional. The residual T-
stabilizer is finite; hence, the corresponding component ®5; of the moduli is
three-dimensional.
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Remark 4.8 (Normal form for Case k = 21). Let F(x2,x3,%4,25) € Sym?’(:vg, X3, T4, T5)
denote the cubic part on (xa,x3, x4, x5). As Co(H) acts on this 4-space through

GL(4), we may change coordinates within (xa,x3,x4,x5) freely. We explain a
constructive reduction to

F ~ 23+ o)+ 728+ 23 + 121324 (0,7 € CX),
which is the part of the normal form appearing in Case k = 21.
Step 1: isolate z3. Write
F = G3(x2,73,74) + 75 Qa(2, T3, T4) + 23 L1 (72,73, 74) + d 3,

with G € Sym® (9, x3,14), Qo € Sym? (w9, x3,24), L1 € (x9,13,24), d € C.
After a linear change, we may assume d # 0 (this is an open condition). Replace
rs by x5 — 3—1dL1(:c2, x3,24); a direct expansion shows the x2-term disappears, so

F = G3(w9, 23, 24) + 5 Qa(22, 23, 74) + d 23

Step 2: Hesse form on the plane x5 = 0. Using GL(3) on (x2,z3,z4), we may
assume that the ternary cubic is in Hesse form

Gz ~ a3+ a5 + 23 + Nwoxsay (A e ©),

which holds for a Zariski-open set of cubics [Huy23]. In what follows, we work
with this Gs.

Step 3: kill the zs-linear quadratic. Apply the shear x; — x;+m;xs (1 = 2,3,4),
keeping x5 fixed. Then

Gs3(xa+mexs, x3+msxs, Ta+maxs) = Gs+xs (mg 0z, G3+m3 0y, Gz+my Oy, Gg)—i—(terms n xg, xg)

Hence, the coefficient of x5 changes by a linear combination of the partials of
Gg N
Q2 > Q2+ m2 0y, Gy +m3 02, G3 + My 0,,G3.

For the Hesse form, one has
8962G3 e 313% + A\x3xy, 8%6*3 = 3JC§ + Azoxy, 83;4G3 = 31'421 + Axaxs.

Therefore, mo, ms, my4 can be chosen to eliminate the three cross terms xraoxs, ToTy, T3T4
in the quadratic, so that the new xs-coefficient is diagonal:

Q2 = ax? + Brd + yal.

A further replacement x5 — x5 + axs + bxs + cxy adjusts the diagonal part; a
short calculation shows that suitable a,b,c (depending on «,B,v,d) make the
entire xs-linear coefficient vanish.' Thus we reach

F ~ G3(3’52,l‘3,$4> + dl‘g

1One may also solve simultaneously for (mz,m3,m4) and (a,b,c) so that after the shear
and the linear change of 5 the x5-linear term is zero; any xg-terms reintroduced by the shear
are absorbed by this final replacement of xs.
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Step 4: diagonal rescaling. Apply diagonal scalings (z2, T3, x4, T5) — (sT2, LT3, uTy, VTF).
The coefficients become s3, t3, u3, X stu, v® respectively on x3, 3, ¥3, Toxsws, T3.
Impose s3 =1, v3 =1, and X stu = 1; then, writing o = (t/s)3, 7 = (u/s)3, we
obtain

F ~ o3 toad+ 723 + 23 + moxzny,

as claimed.

The (zo,x1)-part. On Sym?(zo,z;) ® x¢, the GL(2)-action diagonalizes the
quadratic, giving x3ze + paize with p € C*.

Consistency check. The parameters (o,7,p) are free (up to overall projective
scaling), in agreement with the dimension count dim(W ) = 23, effective group

dimension 19; hence, 23 — 19 — 1 = 3 for the component in Case k = 21.
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Table 2: Summary of closed orbit representatives, criteria used, and component
dimensions for £ = 1,...,21. C-H means the Convex-hull criterion and C-F

means the Casimiro-Florentino criterion.

k | Criterion | Normal form Parameters Dim

1 C-H L2235 + T123a + 255 + 2oxE + 2ive + ToTaTe none 0

2 C-H 2324 + 1125 + T123T5 + ToTE + T1T226 + ToT3To none

3 C-F T125 + 210324 + 2127 + 325 + X0xE + T1T226 + aeCx
ToT3T6 + X ToT4T6

4 C-H mg + Tox3T4 + azmﬁ + m§x5 + T123T5 + ToTaTs + a € C* 1
T122%6 + O ToT3T6

5 C-H T3+ Toxara 105 +ries Friasrs Fxoxd Faize+ aeC*® 1
aTror3xe

6 C-H x%m + xlxi + xox3Ts + xoazg + x%xg + xox2x6 none 0

7 C-H ToXs + Toxs + T1T3T5 + ToTaTs + TrTe + ToT3Te none 0

8 C-F T3+ 2023 + 20xE + T0xE + TIT4+ pT1T2T5 + 0 TET6 (p,0) € (C*)? 2

9 C-F T3x3 + T x2xh + Tox: + prox: 4+ T1x: + T2k + (1,p) € (C*)? 2
ToX2xe + T1T3T6

10 C-F T3T3 + T T2k + T0xT + ToxE + ToTE + T1T2T4 + (1,p) € (C*)? 2
PL1XT3ITs

11 C-F o3+ a3+ a3+ T+ prizors + o zirazs + ToTE + (1,p,0) € (C*)3 3
zox2

12 C-F mlaﬁ + $%$5 + m§m5 + xoxaxs + x%m + xox2T6 none

13 C-F 3 + ox? + woxt + x1w324 + pTOTITH + TIT6 + (p,0) € (C*)? 2
O‘CE%CL‘@ + Tox3Te

14 C-F T3 4+ xoxh + woxs + ToTE + T0XE + 125 + T XT1TS + TeCx 1
xlxg + xlxg

15 C-F TIx4 + T T3T5 + ToT3T5 + ToTaTe + TiT5 + pTaT6 (1,p) € (C*)?

16 C-F x5+ o125 + oot + PX2T3T4 + T1T2T5 + T3 + | (01,02, p, K, 1, A) € (C* )6
Tox? + xiwe + K TiT3 + paizs + NxdTy

17 C-F 22x4 + 7 2322 + Tow3xs + T1Taxs + xixs + TIw6 + (r,p) € (C* )2 2
Pl’%ﬂ?s

18 C-F T3+ 0123 4 oot + praxary + Toxoxs + x123%5 + | (01,00, 0,0, 8,7) € (C)¢| 6
0 TOTAT5 + ToT2Te + B T1T3%6 + Y T1T4T6

19 C-F T34+ ToxT + 1245 + 22t + 306 + 26+ p x3T6+ (p,o) € cx? 2
g XoT1Te

20 C-F @3 4+ xdxs + xirs + x3ws + vias + rire + T xiTe + TeCx 1
x%xe + x%xe

21 C-F x5 +oxd +ras 4+ 22 + xoxsxy + xdx6 + privs (o,7,p) € (C*)? 3
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5 Singular loci of 21 polystable cubic fivefolds

In this section, we determine the singular loci of the closed—orbit representatives
wzf constructed in Section 4. For each k =1,...,21, we set

X, = V() c P8

and compute

- n dp ¢ o0
Slng(Xk) = V(J(cpkf)) - IPG? J(SD) = <al‘0’ tety 8-756) : (l‘o, LR xﬁ) )

i.e. the scheme cut out by the saturated Jacobian ideal. We give a set—theoretic
description of Sing(X}) in each case, and when isolated points occur, we also
record the corank and the local invariants (Milnor and Tjurina numbers, which
agree for our quasi-homogeneous normal forms). Table 3 presents a compact
summary—Ilisting the type and degree of the top—dimensional part and indicat-
ing the presence (or absence) of isolated points. Detailed case-by—case state-
ments are recorded as Propositions 5.1-5.24.

The computations reveal a small list of geometries for the positive—dimensional
singular loci: linear spaces (lines, planes, and 3-spaces), smooth conics, quadric
surfaces (including the rank-3 quadric in Case k = 10), and quartic complete
intersections CI(2,2). Only two components exhibit isolated singular points—
Cases k = 1,6. Cases £k = 1 and k = 6 carry a wild isolated hypersurface
singularity of type

QH(3)19 ~r.e. X2Y + Y4 + XZB?

with p = 7 = 19 and corank 3 (Definition 5.3, Propositions 5.1 and 5.9), pro-
viding the promised appearance of wild points on the boundary in dimension
five.

Computationally, we work throughout with Grébner—basis routines for sat-
uration and primary decomposition (cf. the software cited in the references),
and we evaluate local algebras to extract the numerical invariants at isolated
points. The arguments are elementary once the normal forms of Section 4 are
fixed, and no additional geometric input is required beyond the Jacobian—ideal
calculations. All computations in this section were carried out using Macaulay?2
and Singular [M2, Sing].

5.1 Case k=1
Proposition 5.1. Let X; = V(¢}f) C PS. The set-theoretic singular locus is
Sing(X1) = CU{P},

where
C={zg=21 =290 =23 =0, x52+x4x6:0}
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is a smooth conic in the plane {xg = x1 = 3 = 23 = 0} = P? (hence, deg C =
2), and
P=(1:0:0:0:0:0:0)

s an isolated singular point.

Proposition 5.2. At the isolated point P one has u(P) = 7(P) = 19 and
corank(P) = 3. By the splitting lemma, the germ is right-equivalent to

XY +Y*+ X273,

Definition 5.3 (Notation). We write QH(3)19 for the isolated hypersurface
singularity analytically equivalent to X2Y +Y*+ X Z3. It is quasi-homogeneous
of total degree 24 with respect to weights (wx,wy,wz) = (9,6,5).

Remark 5.4. The type QH(3)19 is wild in Arnold’s sense (in particular, it is
neither simple, unimodal, nor bimodal).

5.2 Case k=2
Proposition 5.5. Let Xo = V(p4f) C PS. Then

Sing(Xg) = L01 U C,
with Loy = V (29, 73,24, 75, 76) ~ P!, and
C = V(xg,x1, 20, T2 + 2326, 25 + 2325) CII, Il = {10 =12, = 29 = 0} = P>,

Here C is a complete intersection CI(2,2) of degree 4, with Loy NC = &.

5.3 Case k=3
Proposition 5.6. Let X3 = V(¢4f) C PS. Then

Sing(Xg) = V(l‘g,l‘g, .1‘4,335) U E,

Y = V(xy, 20,25, 25 + w304 +23) CI' = {x] = 29 = 25 = 0} =~ P3.

The degrees of the top-dimensional components are {1,2}. No isolated singular
points occur.

5.4 Case k=14
Proposition 5.7. Let X4 = V(¢if) C PS. Then
Sing(X4) = V (2,23, 24, 75) UV (20,71, T2, 73, Z4).

Thus, Sing(X,) ~ P2 UPL, with no isolated points.
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5.5 Case k=5
Proposition 5.8. Let X5 = V(p2!) C PS. Then

Sing(Xs) = V (22,23, 24, 25) = P2,

5.6 Case k=6
Proposition 5.9. Let X¢ = V(pif) C PS. Then

Sing(Xe) = {es} UV (3,74, 25,26, 25 + 2o72), € =(0:0:0:0:0:0:1).

At eg, we have p =71 =19, corank= 3, of type QH(3)19.

5.7 Case k=7
Proposition 5.10. Let X7 = V(¢3) C P6. Then
Sing(X7) = CU Lsg, Lsg = V (o, 21, 22,23,24),
C =V (x4, 5,26, T2+ 2123, 23 + 2023) C Il = {T4 = 25 = 26 = 0}.

C is a CI(2,2) of degree 4; C N Lgg = &.

5.8 Case k=8
Proposition 5.11. Let X3 = V(p5f) C PS. Then

Sing(Xg) = Lo2 U S, Loz = V(x1, 3,24, 5, T6),

2., .2, .2
S =V(xg, 21,23, x5+ x5 + x5).

Los ~ P, S is a quadric surface of degree 2, with Los N S = @.

5.9 Case k=9
Proposition 5.12. Let Xg = V(p5") C PS. Then

Sing(Xo) = V (22,3, 74, v5) =~ P2

5.10 Case k=10
Proposition 5.13. Let X19 = V(¢}) C PS. Then
Sing(X19) = Loy U S,
with Loy = V(xa, x3, 24, T5,26) and
S =V (xg, w2, v3, T3 + % + ),
a rank-3 quadric surface in P? with an ordinary double point Ay at (0:1:0 :

0:0:0:0). The intersection Loy NS ={(0:1:0:0:0:0:0)}.
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5.11 Case k=11
Proposition 5.14. Let X11 = V(o) C PS. Then

Sing(Xll) = V(ml,xg,xg,x4) ~ PQ.

5.12 Case k=12
Proposition 5.15. Let X1 = V(o) C PS. Then

Sing(Xlg) = L56 U C, L56 = V($0,$1,$2,$3,$4),

2 2 2
C = V(x4,x5,x6, Ty +$3, Ty +$0$2),

a curve of degree 4, with Lsg N C = .

5.13 Case k=13
Proposition 5.16. Let Xi3 = V(o) C PS. Then

Sing(X13) =T UIlT U™,
with T = V (23,74, 75) ~ P2, and
o+ = V(xo, x3, o5 Fixy, 1 = 2ixg) ~ P2.
Their intersections are It NI~ = {eg}, T NII* = ¢+, with
0+ = V(zo, 3, 4, x5, T £ 2izy) ~ P,

so that TNIIT NI~ = {eg}.

5.14 Case k=14
Proposition 5.17. Let X14 = V(o) C PS. Then

Sing(X14) = S U L()l7

where S =V (z2, 10, ¥3+23+22+23) C H = {29 = 19 = 0} = P4, a quadric 3-
fold cone with vertezv=(0:1:0:0:0:0:0), and Loy = V(x2, 3, x4, T5,%¢).
They meet at SN Lo; = {v}.

5.15 Case k=15
Proposition 5.18. Let X135 = V(o) C P°. Then

Sing‘(X15) = Tl U TQ,

with Ty = V(vg,x3,24) ~ P3, Ty = V(x3,24,75,76) =~ P2. Their span is
{r3 =14 =0} ~P* and

Ty N Ty = V(xo, x3, 24, 5, 26) ~ PL.
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5.16 Case k =16
Proposition 5.19. Let X156 = V(pi) C PS. Then

Sing(X16) = V(wa, 23, 24) ~ P3.
5.17 Case k=17
Proposition 5.20. Let Xi7 = V(pi) C PS. Then

Sing(X17) =Th U Ty,
with Ty = V (23,24, 75) = P3, Ty = V(x0, 21, 23, 74) =~ P2, and
Ty NTy = V(xog, 1,73, 24, 5) =~ P

5.18 Case k=18
Proposition 5.21. Let X153 = V(L) C PS. Then

Sing(Xlg) = V($2,$3, 374) ~ P3.
5.19 Case k=19
Proposition 5.22. Let X9 = V() C PS. Then

Sing(X19) = V (w3, 24, 25) ~ P°.
5.20 Case k=20
Proposition 5.23. Let Xo9 = V(p3) C PS. Then
Sing(Xa0) = YULsg, Y =V (xy,25, v2+ai+ai+x3), Lss = V(zo, 1,2, T3,T4).
5.21 Case k=21
Proposition 5.24. Let Xo; = V(¢4) C P6. Then

Sing(Xgl) = V($23x37x4>x5) = IPZ‘
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Table 3: Singular loci of the 21 closed-orbit representatives (Section 5)

k  Singular locus (notation of §5) Type / degree of top- Isolated point(s) / invariants
dimensional part
1 CU{P} with C a smooth conic, conic (deg 2) one point P: u = 7 =
P = (1:0:0:0:0:0:0) 19, corank 3, type QH(3)19
(re. X2V +Y* + XZ3)
2 Loy UC with Loy = ]P’l, C a line P' + quartic curve —
CI(2,2) in II (disjoint) CI(2,2) (deg 4)
3 V(xe,x3,24,25) U T with £ C  plane P? (deg 1) 4+ quadric —
IT" a quadric surface surface (deg 2)
4 V(xz,x3,24,5) u P?uUP _
V(l‘o,l‘1,{v2,$3,x4)
5 V(x2,x3,T4,T5) plane P? (deg 1) —
6 {es} U V(ws,xa,25,26, 23 + conic (deg 2) one point eg = (0:0:0:0:0:0:1):
ToT2) u = 7 = 19, corank 3, type
QH(3)19
7 C U Lsg with Lsg = IF’l, C a line P! + quartic curve —
CI(2,2) in II (disjoint) CI(2,2) (deg 4)
8 Loa US with Los = P!, S a line P* + quadric surface —
quadric surface (disjoint) (deg 2)
9 V(x2,zs,x4,25) plane P? (deg 1) —
10 Loy U S with S a rank-3 line P! + quadric surface —
quadric surface; Lot NS = (deg 2)
{(0:1:0:0:0:0:0) }
11 V(x1,x2,%3,T4) plane P? (deg 1) —
12 Lsg U C with Lsg = ]P’l, C a line P' + quartic curve —
degree-4 curve (disjoint) (deg 4)
13 TUITTUIT™ with T~ P? TIF ~ P? (deg 1) —
P%, TNIIT = ¢f, 0T NI~ =
{es}
14 SULe with SN Loyt = (0:1: quadric 3-fold cone (deg 2) —
0:0:0:0:0)
15 Ty UTs with Ty ~ P3, Tp ~ P?; P? (deg 1) —
TiNT, ~P!
16 V(x2,xs,4) P? (deg 1) -
17 Ty UTs with Ty ~ P Ty ~ P%; P? (deg 1) —
T1 N T2 ~ Pl
18 V(x2,xs,x4) P? (deg 1) —
19 V(xs, x4, z5) P? (deg 1) —
20 Y U Lsg, with Y = {4 = x5 = quadric 3-fold (deg 2) + line —
rgtaitad4al =0}; YNLsg = P
{(0:0:0:0:0:0:1) }
21 V(xz2,zs3,24,T5) plane P? (deg 1) —

Notes. Notation follows Section 5: Lo1 = V(z2,z3,z4,5,%6), Lse = V(zo,x1,22,23,24),
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Loz = V(z1,23,24,25,26), Il = {24 = 25 = 26 = 0}, II' = {z1 = 22 =25 =0}, T =
V(zs,z4,25), I+ = V(xo, 23,25 F iz4, 1 £ 2iz2), 66 = (0: 0:0:0:0:0:1). The
type QH(3)19 denotes the quasi-homogeneous isolated hypersurface singularity that is right-
equivalent to X2Y + Y4+ X 73 (wild).

6 Adjacency relations among strictly semistable
components

In this section, we record the adjacency relations among the closed strata
{®r}3L, € P(W)®, where W = Sym®C”. We adopt the following conven-
tion: two components ®; and ®; are adjacent if there exists a codimension-one
wall in the Hilbert—-Mumford weight space such that the maximally destabilizing
1-PS’s for general points of ®; and ®; coincide on the wall, and both specialize
to the same unstable limit in P(W) (see Definition 6.2).

This notion of adjacency reflects wall-crossing in Kirwan’s stratification, and
geometrically corresponds to codimension-one faces of the convex cones I(r)>q
associated with the 1-PS weights.

Our strategy is as follows:

(1) For each pair of weight vectors r;,r; listed in Section 2, we examine the
intersections
H(I‘)zo n H(I‘i)zo, ]I(I‘)zo N H(I‘j):o,

and determine whether they are maximal subsets in the corresponding
hyperplanes. The same algorithm as in Section 2 can be applied here.

(2) If these intersections are maximal precisely when r = r; (resp. r = r;),
then ®; and ®; admit a common degeneration.

(3) Using the explicit normal forms from Section 4, we check that generic
representatives ¢; € ®;, ¢; € ®; satisfy

lm A;(t) - ¢s = im Ai() - 65,

thereby confirming adjacency.

(4) For all other pairs, we rule out adjacency by support considerations to-
gether with the non-inclusion results of Section 7.

The main result of this section is the following classification:

Theorem 6.1. Among the closed strata Oy in the strictly semistable locus, the
only nonempty pairwise intersections are the following eight pairs:

{®1, 27}, {P2,P6}, {P3, P12}, {Ps,Pio},
{®g, @15}, {P10, P17}, {P11,Par}, {Pis, Poo}

All other pairwise intersections are empty.
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Thus, the adjacency graph of the boundary consists precisely of these eight
edges, realized as wall-crossings in the Hilbert—-Mumford weight space (see Propo-
sitions 6.3-6.10 for the case-by-case verifications).

For the following definition, see [Kir84], [DH98], and [Tha96].

Definition 6.2. [Adjacency via wall-crossing] Let ®;, ®; be closed strata in the
strictly semistable locus. We say that ®; and ®; are adjacent if there exists a
codimension-one wall in the Hilbert—Mumford weight space such that for general
f € ®; and g € ®; one has u(f, Ni) = p(f,A;) on the wall and both specialize
to the same unstable limit in P(W).

The following sequence of propositions and the theorem can be verified by
computations using the same algorithm as in Section 2. More precisely, we work
inside the hyperplane I(ry)—¢ C I and determine the inclusion-maximal subsets
of the form I(r)>o NI(ry)=o, where r € ZZO) ranges over 1-PS’s of T'.

Proposition 6.3. The closed strata ®, and ®7 are both zero-dimensional and
adjacent. Forr € Z(70)’ the intersection I(r)>o NI(r1)=o is a mazimal subset in
I(r1)=o if and only if r = r7, and I(r)>oNI(r7)=o is a mazimal subset in I(r7)=o
if and only if r = r1. Moreover, for suitable specializations (with all coefficients
of ¢ normalized to 1) q~51, (57 one has

. BOET A 2 2
}%A7(t) (bl %E}I(l)/\](t) ¢7 l‘0$5+$1$6.

Proposition 6.4. The closed strata ®5 and ®g are both zero-dimensional and

adjacent. Forr € ZZO)’ the intersection I(r)>o NI(r2)=o is a mazimal subset in
I(re)=o if and only if r = re, and I(r)>oNI(re)=0 is a mazimal subset in I(re)=o

if and only if v = ro. Moreover, for suitable specializations (with all coefficients
of ¢ normalized to 1) ¢2, pg one has

lim /\6(t) . (&2 = lim /\2(75) . Qgﬁ = I1X3T5 + ToT3Tg-
t—0 t—0

Proposition 6.5. The closed stratum ®3 is one-dimensional and ®15 is zero-
dimensional. Forr € Zzo)’ the intersection I(r)>o NI(rs)=o is @ mazimal subset
in I(rg)=o if and only if r = r12, and I(r)>o N I(ri12)=o is a mazimal subset in
I(ri2)=o if and only if r = r3. Moreover, for suitable specializations (with all
coefficients of ¢y, normalized to 1) b3, 12 one has

lim /\12(t) . ¢~53 = lim /\3(t) . (512 = .13133421 + Z‘§$5 + ToxT3Tg-
t—0 t—0

Proposition 6.6. The closed strata ®g and $19 are both two-dimensional and
adjacent. Forr € ZEO), the intersection I(r)>o N I(rs)=o is a mazrimal subset
in I(rg)=o if and only if r = r19, and I(r)>o N I(ri9)=o is a mazimal subset in
I(ri9)=o0 if and only if r = rg. Moreover, for suitable specializations (with all
coefficients of ¢y, normalized to 1) ¢s, P19 one has

}Lr% /\19(t)-q~58 = }51(1) /\g(t)'qi;lg = m§+xomi+xom4x5+xox§+zfx6—|—x1xgx6+x§x6
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Proposition 6.7. The closed strata ®9 and P15 are both two-dimensional and
adjacent. For r € Z(70)’ the intersection I(r)>o N I(rg)=g is a mazimal subset
in I(rg)=o if and only if r = r15, and I(r)>o NI(r15)=0 is a mazimal subset in
I(ry5)=0 if and only if r = rg. Moreover, for suitable specializations (with all
coefficients of ¢r, normalized to 1) (59, (;315 one has

tlg[(l) )\15(25) - g = lim /\g(t) . (2)15 = .Ig + ToTaTs + T1T2T6 + ToX3Tg

Proposition 6.8. The closed strata @19 and ®17 are both two-dimensional and
adjacent. Forr € Zzo , the intersection I(r)>o N I(ri0)=o is a mazimal subset
in I(r10)=0 if and only if r = r17, and I(r)>o NI(r17)=0 is a mazimal subset in
I(r17)=0 if and only if r = r19. Moreover, for suitable specializations (with all
coefficients of ¢r, normalized to 1) ¢~>10, &17 one has

lim Aq7(¢) - &10 = lim Ao (¢) - &17 = xg + X1T3T5 + ToT4T5 + T1T2T6
t—0 t—0

Proposition 6.9. The closed strata ®11 and P21 are both three-dimensional
and adjacent. For r € ZZO)’ the intersection I(r)>o N I(ri1)=0 is a mazimal
subset in I(r11)=o if and only if r = ro1, and I(r)>o N I(re1)=¢ is a mazimal
subset in 1(ra1)=o if and only if v = r11. Moreover, for suitable specializations

(with all coefficients of ¢, normalized to 1) ¢11, $21 one has

lim Aoy (2) - b1 = %g% M (t) - P

t—0
=z + x2a:3 + :1:2332 + a3 + x2x4 + Tox3xg + x2xd + x2x2 + x3m2 + x>
2 2 3 3 2 3 4 4 4

Proposition 6.10. The closed strata ®14 and ®o9 are both one-dimensional
and adjacent. For r € ZEO), the intersection I(r)>o N I(ri4)=0 is a mazimal
subset in I(r14)=o if and only if r = rog, and I(r)>o N I(reg)=¢ is a mazimal
subset in I(rap)=o if and only if r = r14. Moreover, for suitable specializations
(with all coefficients of ¢y, normalized to 1) b14, b0 one has

Hm oo (t) - dra = lm Aia(t) - doo = @035 + 21235 + ToTaTe + T1T3T6
t—0 t—0

Collecting the above, we obtain Theorem 6.1.

7 Non-inclusions and algorithmic certification

In this section, we prove Proposition 3.5. As treating all 21 x 20 = 420 ordered
pairs (k,l) by hand is essentially impossible, we rely on computer algebra to
produce a machine-checkable certificate. To this end, we first recast the problem
in a computational form. All computations in this section were carried out using
Magma [BCP97].

Let P = (p;j) be a 7 x 7 matrix whose entries p;; are algebraically indepen-
dent indeterminates, and let f,f denote the image of f; under the linear change
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of variables determined by P. Without loss of generality, we may assume that
all coefficients of fj, are 1. Then

Supp(f#) € I(r;)>0

holds if and only if every coefficient of a monomial that does not lie in I(r;)>o (a
forbidden monomial) vanishes in f,f . These coefficients are cubic polynomials
in the variables p;;. Let I(k,l) denote the ideal generated by these coefficients
in the polynomial ring in the p;;.

Thus, it suffices to show that the affine variety

V(I(k1) + (det(P) —1)) = @.

In practice, we verify this emptiness by a Grobner basis computation: the basis
reduces to 1, thereby providing a finite, machine-checkable certificate of non-
inclusion. This is the overall strategy we follow below.

We shall use the following Rabinowitsch trick (see [CLOO07] Section 4, Propo-
sition 8 p.178).

Theorem 7.1 (Rabinowitsch trick). Let R = C|p;;] be the polynomial ring in
the indeterminates p;;, and let I C R be an ideal and f € R. Introduce a new
indeterminate t. Then the following are equivalent:

V(IHND(f)=2 — 1eIR[t] + (1-tf) C R[],
where D(f) C Spec R denotes the principal open subset {p € Spec R | f ¢ p}.
Applying this to our situation, let P = (p;;) and set
Jes = I(k,0) + (1—tdet(P)) C RJt.
By Theorem 7.1, the condition
1€ Juy

is equivalent to
V(I(k,l)) N D(det(P)) = o.

Hence, it suffices to prove 1 € Ji;. (Note that this imposes only the open
condition det(P) # 0, which is sufficient for our purposes.)

Theorem 7.2. Running this algorithm using Grobner bases, we verify that
1 € Jg, for every pair (k,1). Hence, Proposition 3.5 holds.

Remark 7.3. Although one can run the above algorithm verbatim, the compu-
tation time is substantial, so we consider accelerating the procedure. From the
system of cubic equations in the variables p;j, it follows that some of the entries
pi; must vanish. We record the following example as typical.
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Example. We show that fg is not contained in f modulo SL(7). The mono-
mials 23, 2374, 27%, Tox374, Tox3, ¥325 do not appear in the support of f,
i.e., they are forbidden monomials. Embedding fgs into fo would require trans-
forming the cubic part ¢(xg, 1,22, 23) of fg into the cubic part ¢(xq, x1,x2) of
f2 via an element of SL(7). Consequently, the change of variables must have
the form

xo = lo(x0, 21, 22), x1 = (0,21, 22),
Zo, T1,L2), xg = I3(x0, 21, 22),

x07$1;x2yx3ax4zx57$6), Ts = l5($0,.’1)1,l‘2,Z‘3,$4,$5,.’L‘6),

where each [; is a linear form. However, under such a transformation, the
monomial zo23 typically re-emerges from ly(zg,z1)z3; this monomial is not in
the support of fs. To avoid this, we must restrict the first three variables to

xo = lo(x0, 1), x1 = li (o, 1), xo = la(x0, 1, T2).

Yet new monomials such as x122, xozd, x122 arise from the term ly(zo, z1)z3
and are likewise absent from the support of fo. Hence, we must further impose
xg = lg(x3,24). With these conditions, the associated matrix P € SL(7) has
the block form

poo Po1 O 0 0 0 0
pio p1,1 O 0 0 0 0
P20 P21 P22 O 0 0 0

0 0

P30 P31 p32 O 0
P40 P41 Pa2 Pa3 DPaa O 0

Pso P51 P52 P53 P54 P55 D56
Ps,o D61 Ps62 P63 P64 P65 P66

Its determinant is zero, so no such matrix lies in SL(7). Therefore, fs cannot
be contained in f; modulo SL(7).

Remark 7.4. In this ezample, the conditions p;; = 0 alone already force
det(P) = 0. In general, however, such vanishing conditions by themselves do
not suffice to imply det(P) = 0. Rather, the relations p; ; = 0 reduce the num-
ber of variables and simultaneously simplify the system of equations, so that a
Grobner basis computation becomes feasible within a reasonable amount of time,
and from this computation, the conclusion det(P) =0 can then be drawn.

We can decide whether p;; = 0 is forced by using the Rabinowitsch trick as
follows.

Proposition 7.5. The following are equivalent:
V(Ik)l)ﬂD(pij)ZQ <= 1€Ik’l+<1—tpij> CR[t].
Consequently, one can determine whether the vanishing p;; = 0 is forced by a

Grobner—basis computation.
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