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Abstract

Using geometric invariant theory (GIT), we compactify the moduli
space of stable cubic fivefolds by adjoining strictly semistable hypersur-
faces. We show that the strictly semistable locus decomposes into 21 ir-
reducible components and provide a closed-orbit representative for each.
Our analysis of the boundary singularities reveals the presence of wild
isolated hypersurface singularities, suggesting that dimension five marks
a threshold beyond the ADE/unimodal paradigm observed in lower di-
mensions. We also determine adjacency relations among boundary com-
ponents, providing explicit instances of wall-crossing in Kirwan’s stratifi-
cation.

Introduction

The geometric invariant–theoretic (GIT) compactification of the moduli space
of cubic hypersurfaces is obtained by adjoining the strictly semistable hyper-
surfaces as boundary strata. In low dimensions—cubic threefolds (n = 3) and
cubic fourfolds (n = 4)—conventional analyses demonstrate that the boundary
is essentially governed by simple (ADE) or, at most, unimodal singularities; in
particular, wild isolated hypersurface singularities are not observed at the typi-
cal boundary points (see [Yok02] for cubic threefolds and [Laz09] for cubic four-
folds). This study demonstrates that the picture changes qualitatively for cubic
fivefolds (n = 5). We construct the GIT compactification by adjoining strictly
semistable fivefolds and demonstrate that its boundary decomposes into 21 ir-
reducible components, each admitting an explicit closed–orbit representative in
normal form (Table 2). An analysis of saturated Jacobian ideals determines the
singular loci of these representatives and presents two phenomena that are ab-
sent in lower dimensions: first, exactly two closed–orbit representatives (Cases
k = 1, 6) exhibit a wild isolated hypersurface singularity of type QH(3)19 (quasi–
homogeneous, corank 3, µ = τ = 19). Second, among the positive–dimensional
possibilities encountered—besides lines, smooth conics, quadric surfaces (includ-
ing a rank–3 cone), and space quartics CI(2, 2)—are a quadric threefold (Case
k = 20) and quadric threefold cone (Case k = 14). In this sense, dimension five
marks a threshold beyond the ADE/unimodal paradigm (see Theorem C and
Table 3 in Section 5).
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Theorem A (Decomposition of the strictly semistable locus). The
strictly semistable locus in P(W )//SL(7) decomposes into 21 irreducible com-
ponents. Each component admits a closed SL(7)-orbit represented by an explicit
normal form; see Table 2 (Section 4).

Theorem B (Closed–orbit representatives and stability criteria). For
each component, we produce a closed–orbit representative via a one–parameter
specialization followed by Luna’s centralizer reduction. When the centralizer is
a torus, polystability is certified by the convex–hull criterion ; otherwise we apply
the Casimiro–Florentino symmetric–1-PS criterion. In both cases, we obtain
explicit normal forms (see Section 4 and Table 2).

Theorem C (Singularities on the boundary). Let W = Sym3C7 and write
Φ1, . . . ,Φ21 ⊂ P(W )//SL(7) for the strictly semistable boundary components.
For each k, let φnf

k be the closed-orbit representative from Section 4 and set
Xk = V (φnf

k ) ⊂ P6. Then:

(1) The saturated Jacobian ideal of φnf
k computes Sing(Xk) explicitly; their

set-theoretic types are listed in the summary table of Section 5 (Table 3).
The positive-dimensional possibilities observed include: a line; a smooth
conic; a quadric surface (including the rank-3 cone in Case k = 10); a
quartic complete intersection CI(2, 2); linear spaces P2 or P3; and also a
quadric threefold and a quadric threefold cone (Cases k = 20 and k = 14,
respectively).

(2) Exactly two closed-orbit representatives have an isolated singular point,
namely k = 1 and k = 6. In these cases, the isolated point is quasi-
homogeneous of corank 3 with Milnor and Tjurina numbers µ = τ = 19;
Analytically, it is right-equivalent to X2Y + Y 4 +XZ3 (type QH(3)19).

(3) For a general point of a boundary component, the singular locus is one
of: a line, a smooth conic, a non-degenerate space quartic CI(2, 2), or an
isolated point of corank 3.

Theorem D (Adjacency via wall-crossing). We record pairwise adjacencies
among strictly semistable components as wall-crossings in Kirwan’s stratifica-
tion. Aside from isolated components, the only nonempty pairwise intersections
occur in the eight pairs

{Φ1,Φ7}, {Φ2,Φ6}, {Φ3,Φ12}, {Φ8,Φ19}, {Φ9,Φ15}, {Φ10,Φ17}, {Φ11,Φ21}, {Φ14,Φ20}.

See Theorem 6.1 and [Kir84, DH98, Tha96].

Ideas and methods

Our starting point is a convex-geometric analysis of Hilbert–Mumford weights on
W = Sym3C7 [MFK94, Dol03]. Fixing a maximal torus T ⊂ SL(7) and writing
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Supp(f) ⊂ I = Z7
≥0(3) for the exponent set of f , we enumerate the maximal T -

strictly semistable supports I(r)≥0 containing the barycenter η = (3/7, . . . , 3/7).
An algorithmic search over the faces of Conv(I) that pass through η yields 23
candidates up to permutation; exactly one is T -unstable and is discarded, leav-
ing 22 families with respect to T . Modulo SL(7) there is a single residual identi-
fication f21 ∼ f22, and a case-by-case inclusion analysis then demonstrates that
no further identifications occur, producing the required 21 SL(7)-inequivalent
families (Algorithm 2.2, Proposition 3.4, Theorem 3.6).

For each family, we obtain a closed SL(7)-orbit by considering a one-parameter
subgroup limit and applying Luna’s centralizer reduction [Lun75]. If the central-
izer is a torus, we invoke the convex-hull criterion; if it is non-toric, we use the
Casimiro–Florentino criterion [CF12]. This dichotomy uniformly yields closed-
orbit representatives, from which the component dimensions follow (Section 4;
see also Table 2).

Lastly, to demonstrate non-inclusions among distinct families̶and hence to
demonstrate that the 21 components vary significantly̶we employ Gröbner-
basis computations together with the Rabinowitsch trick (Section 7) [Buc65,
CLO07].

Organization of the paper

Section 1 recalls the numerical criterion for (semi)stability in convex-geometric
language. Section 2 enumerates maximal strictly semistable supports for the
maximal torus T (Algorithm 2.2). Section 3 passes from T -data to the SL(7)-
action, eliminates redundancies, and arrives at the 21 families f1, . . . , f21; it also
records the non-inclusion statement among distinct families (with the proof de-
ferred to Section 7). Section 4 constructs closed-orbit representatives, proves
polystability (via the convex-hull or Casimiro–Florentino criterion), and records
component dimensions. Section 5 computes singular loci and lists isolated types,
including wild examples. Section 6 records adjacencies as wall-crossings in
Kirwan’s stratification. Section 7 provides the Gröbner-based certification of
non-inclusions. Table 2 presents a compact summary of the normal forms and
dimensions.

We present below a table comparing cubic threefolds, fourfolds, and fivefolds.

Cubic threefolds in P4 (See [Yok02].)

Moduli dimension. Number of monomials
(
5+3−1

3

)
= 35, projective dimension

34; dimPGL5 = 24. Thus dimMGIT = 34− 24 = 10.
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Components of the GIT boundary (polystable closed orbits). Two irreducible
components:

(i) a P1-family {ϕα,β} with parameter [α : β], and

(ii) the isolated point represented by ϕ = vwz + x3 + y3.

Singularity profile (stability). Stable ⇐⇒ only double points of type An with
n ≤ 4. Semistable ⇐⇒ only An (n ≤ 5), D4, or A∞ double points. Inside
the P1-component, the special member with α2 = 4β is the secant threefold
(the singular locus is the rational normal curve).

Adjacency/closures. Both boundary components consist of closed orbits; the
P1-component and the isolated point are distinct boundary components (there
is no specialization of one to the other).

Cubic fourfolds in P5 (See [Laz09, Yok08, Huy23].)

Moduli dimension. Number of monomials
(
6+3−1

3

)
= 56, projective dimension

55; dimPGL6 = 35. Thus dimMGIT = 20.

Boundary (closed orbit) families and their dimensions. There are six types,
denoted [C.1]-[C.6], of respective dimensions 1, 2, 3, 1, 1, 0. A convenient set
of normal forms is:

[C.1] u q1(w, x, y, z) + v q2(w, x, y, z) with V (u, v, q1, q2) smooth.

[C.2] u(xy + xz + yz + αz2) + v2x+ w2y + 2vwz (generic α).

[C.3] uy2 + v2z + l1(w, x)uz + 2 l2(w, x) vy + c(w, x) with l22 ∤ c, l1 ∤ c.

[C.4] uvw + c(x, y, z) with V (u, v, w, c) smooth.

[C.5] αuy2 + v2z + w2x− uxz + 2vwy (α 6= 0).

[C.6] uvw + xyz.

Stability via singularities. A cubic fourfold with only isolated simple (ADE)
singularities is GIT stable. Conversely, non-stability occurs if any of the
following conditions holds: (1) Sing(X) contains a conic; (2) Sing(X) contains
a line; (3) Sing(X) contains the intersection of two quadrics; (4) X has a
double point of rank ≤ 2; (5) a rank 3 double point with a hyperplane section
whose singular locus is a line with ranks ≤ 2 along it; (6) a rank 3 double
point whose tangent-cone singular locus is a 2-plane in X.

Adjacency (specialization) among boundary strata. If we denote the families
[C.1] to [C.6] by C1, S2, V3, C4, C5, P6, then

P6 ⊂ S2 ∩ V3, P6 ∈ C1 ∩ C4 ∩ C5.

Cubic fivefolds in P6
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Moduli dimension. Number of monomials
(
7+3−1

3

)
= 84, projective dimension

83; dimPGL7 = 48. Thus dimMGIT = 35.

Components of the GIT boundary (strictly semistable locus). There are 21 ir-
reducible boundary components. At the level of closed-orbit representatives,
the positive-dimensional possibilities further include a quadric surface (includ-
ing a rank-3 cone), linear spaces P2 and P3, as well as a quadric threefold and
a quadric threefold cone; see Table 3 (Section 5). Exactly two closed-orbit
representatives carry an isolated singular point (Cases k = 1, 6), which is
quasi-homogeneous of corank 3 with Milnor and Tjurina numbers µ = τ = 19
(type QH(3)19).

Scripts used in this paper

The scripts used in this paper are publicly available at [Shi25]. In particular,
the archive includes the scripts for Sections 2, 5, 6, and 7.
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1 Numerical criterion for cubic fivefolds

In this section, we review the numerical criterion for stability or semistability
of cubic fivefolds. We use the following notations.

• Let C[x0, · · · , x6]3 be the set of homogeneous polynomials of degree 3.

• For a vector x ∈ Q7, wt(x) =
∑6

k=0 xk is called the weight of x.

• We define Z7
≥0 = {x = (x0, x1, · · · , x6) ∈ Z7|xk ≥ 0(k = 0, 1, · · · , 6)},

Z7
(d) = {x ∈ Z7|wt(x) = d},

I = Z7
(3) ∩ Z7

≥0 and it is simply called the simplex.

• For r ∈ Q7, we define I(r)≥0 = {i ∈ I|r · i ≥ 0}, I(r)>0 = {i ∈ I|r · i > 0}
and I(r)=0 = {i ∈ I|r · i = 0}, here · denotes the standard inner product
of vectors.

• For a polynomial f =
∑

wt(i)=3 aix
i ∈ C[x0, · · · , x6]3, we define the sup-

port of f by Supp(f) = {i ∈ I|ai 6= 0}
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• We set η = (3/7, 3/7, 3/7, 3/7, 3/7, 3/7, 3/7) ∈ Q7 and it is called the
barycenter of the simplex I.

• A vector r ∈ Z7 is said to be reduced when there is no integer α such that
|α| ≥ 2 and 1

αr ∈ Z7

We fix a maximal torus T of SL(7). Consider a one-parameter subgroup
(1-PS for short) λ : Gm → SL(7) whose image is contained in T . For a suitable
basis of C7, λ can be expressed as a diagonal matrix diag(tr0 , tr1 , · · · , tr6) where
t 6= 0 is a parameter of Gm. Let us choose and fix such basis. Then λ corresponds
to an element r = (r0, r1, · · · , r6) in Z7

(0). We can regard an element of Z7
(0) as

a 1-PS of T .

Definition 1.1. Let s be a subset of I. We say that s is not stable (resp.
unstable) with respect to T when s ⊆ I(r)≥0 (resp. s ⊆ I(r)>0) for some 1-PS
r. For 0 6= f ∈ C[x0, · · · , x6]3, we say that f is not stable (resp. unstable) with
respect to T when Supp(f) ⊆ I is not stable (resp. unstable) with respect to T .

The following theorem is the numerical criterion for stability via the language
of convex geometry.

Theorem 1.2. The cubic fivefold defined by f ∈ C[x0, · · · , x6]3 is not stable
(resp. unstable) if and only if there exists an element σ ∈ SL(7) such that fσ is
not stable (resp. unstable) with respect to T .

In particular, f is strictly semistable if and only if

(1) There exist σ ∈ SL(7) such that fσ is not stable with respect to T , and

(2) For any σ ∈ SL(7), fσ is semistable with respect to T .

Proof. See Theorem 9.1 of [Dol03].

2 Maximal strictly semistable cubic fivefolds with
respect to the maximal torusT

In this section, we list the irreducible components corresponding to strictly
semistable cubic fivefolds. For this purpose, we list all strictly semistable cubic
fivefolds with respect to the maximal torus T . To solve this problem, we will
consider the set of maximal strictly semistable subsets of I. The order in the
set of subsets of I is given by inclusion. For this purpose, we list the set of all
maximal elements of S = {I(r)≥0|r ∈ Z7

(0)}.
We solve this problem computationally. We need an algorithm which enables

us to obtain them in finitely many steps. Before giving such an algorithm, we
remark that I(r)≥0 and I(r′)≥0 might be the same for two different vectors
r, r′ ∈ Z7

(0).

Lemma 2.1. Let I(r)≥0 be a maximal element of S, where r ∈ Z7
(0). Then there

exist 5 elements x1,x2, · · · ,x5 ∈ I and a vector r′ ∈ Z7
(0) such that they satisfy

the following three conditions:
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(1) The vector subspace W of Q7 spanned by x1, · · · ,x5, η over Q has dimension
6

(2) The vector r′ is orthogonal to the subspace W of Q7.

(3) I(r)≥0 = I(r′)≥0

Proof. Let us put C = I(r) ∪ {η}. We consider the convex-hull Č of C in Q7.
Let F be a face of Č containing the point η. There is a normal vector r′ of F
in Z7

(0) such that Č ⊆ {x ∈ Q7|r′ · x ≥ 0}. We have wt(r′) = 0 because the

hyperplane defined by {x ∈ Q7|r′ · x = 0} passes through the point η. By the
definition of the faces of a convex set in Q7, we can take 5 points x1,x2, · · · ,x5

from the set I∩F such that x1,x2, · · · ,x5, η are linearly independent over Q. In
general we have I(r)≥0 ⊆ I(r′)≥0, and by the assumption that I(r)≥0 is maximal
in S, we conclude that I(r)≥0 = I(r′)≥0.

By this lemma, we can determine the set of maximal elements of S up to
permutations of coordinates in finite steps using the following algorithm.

Algorithm 2.2. Let F be the set of five different points of I. We fix a total
order on F . As an initial data, we set S ′ = ∅ and x = (x0, · · · , x5) be the
minimum element of F . We will modify S ′ using the following algorithm.

• Step 1. If the subspace W spanned by x0, · · · , x5, η of Q7 has dimension
6 then take a reduced normal vector r = (r0, · · · , r6) ∈ Z7

(0) of W and go
to Step 2, else go to Step 5.

• Step 2. If r = (r0, · · · , r6) satisfies the condition r0 ≥ · · · ≥ r6 or r0 ≤
· · · ≤ r6, then go to Step 3, else go to Step 5.

• Step 3. If r0 ≥ · · · ≥ r6 (resp. r0 ≤ · · · ≤ r6) add I(r) (resp. I(−r)) to S ′

and go to Step 4.

• Step 4. Delete all elements of S ′ that are not maximal in S ′ and go to
Step 5.

• Step 5. Replace the element x with the next element if x is not the maxi-
mum element, and go to Step 1. Otherwise, stop the algorithm.

We note that Step 2 removes the S7 symmetry on the variables x0, · · · , x6.
We also note that Step 4 is not essential but serves as technical measure to
save memory. After running this algorithm with the aid of a computer, we
find 23 elements I(r1)≥0, · · · , I(r23)≥0 in S ′, where rk = (r0, · · · , r6) ∈ Z7

(0) is
a reduced vector with r0 ≥ · · · ≥ r6. When we compute the convex-hulls of
I(r1)≥0, · · · , I(r23)≥0 in Q7, only one of the convex-hulls of I(rk)≥0 does not
contain η. We denote it as I(r23)≥0. As I(r23)≥0 is unstable with respect to T ,
we remove it from the list. Thus, we can conclude that there are 22 maximal
strictly semistable cubic fivefolds for the fixed maximal torus T . Because of this
algorithm, we have the following proposition.
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Proposition 2.3. The set M = {I(r1)≥0, · · · , I(r22)≥0} is given as follows.

r1 = (8, 3, 2,−1,−2,−4,−6) r2 = (6, 4, 1,−1,−2,−3,−5)
r3 = (4, 2, 1,−1,−1,−2,−3) r4 = (3, 2, 1, 0,−1,−2,−3)
r5 = (4, 2, 1, 0,−1,−2,−4) r6 = (5, 3, 2, 1,−1,−4,−6)
r7 = (6, 4, 2, 1,−2,−3,−8) r8 = (4, 1, 1, 0,−2,−2,−2)
r9 = (2, 2, 0, 0,−1,−1,−2) r10 = (2, 1, 0, 0,−1,−1,−1)
r11 = (2, 0, 0, 0, 0,−1,−1) r12 = (3, 2, 1, 1,−1,−2,−4)
r13 = (2, 1, 1, 0,−1,−1,−2) r14 = (2, 2, 0,−1,−1,−1,−1)
r15 = (2, 1, 1, 0, 0,−2,−2) r16 = (2, 1, 0, 0, 0,−1,−2)
r17 = (1, 1, 1, 0, 0,−1,−2) r18 = (1, 1, 0, 0, 0,−1,−1)
r19 = (2, 2, 2, 0,−1,−1,−4) r20 = (1, 1, 1, 1, 0,−2,−2)
r21 = (1, 1, 0, 0, 0, 0,−2) r22 = (1, 0, 0, 0, 0, 0,−1)

For example, I(r1)≥0 is
I(r1)≥0 = {x3

0, x
2
0x1, x

2
0x2, x

2
0x3, x

2
0x4, x

2
0x5, x

2
0x6, x0x

2
1, x0x1x2, x0x1x3, x0x1x4,

x0x1x5, x0x1x6, x0x
2
2, x0x2x3, x0x2x4, x0x2x5, x0x2x6, x0x

2
3, x0x3x4, x0x3x5, x0x3x6,

x0x
2
4, x0x4x5, x0x4x6, x0x

2
5, x

3
1, x

2
1x2, x

2
1x3, x

2
1x4, x

2
1x5, x

2
1x6, x1x

2
2, x1x2x3, x1x2x4,

x1x2x5, x1x
2
3, x1x3x4, x

3
2, x

2
2x3, x

2
2x4, x

2
2x5, x2x

2
3}.

Here we use the notation xi0
0 xi1

1 · · ·xi6
6 for an element (i0, i1, · · · , i6) ∈ Z7

(3) in
order to save space.

Remark 2.4. The following vectors can serve as r23, i.e., there are several vec-
tors that yield the set I(r23)≥0. For example, we can take r23 = (8, 5, 3, 2,−4,−4,−10).

Remark 2.5. The algorithm in this section has been comprehensively general-
ized by [GMMS23].

3 21 maximal strictly semistable cubic fivefolds
under action of SL(7)

An element I(rk)≥0 of M represents a family of cubic fivefolds whose defining
polynomial’s support is contained in I(rk)≥0. In this section, we analyze the
inclusion relations among I(rk)≥0 under the action of SL(7). Let fk be a generic
polynomial whose support is I(rk)≥0. (k = 1, 2, · · · , 22). If we express fk
directly, it becomes too long, so we introduce notation.

Definition 3.1. The symbols c, q, l, α stand for a cubic form, a quadratic form,
a linear form, and a constant term, respectively. Similarly, the symbols qi, li, αi

denote the i-th quadratic form, a linear form, and a constant term, respectively.

The following theorem is a direct consequence of the list in Proposition 2.3.

Theorem 3.2. Using the above notations, the generic polynomials of f1, · · · , f22
are the following forms.

• f1 = c(x0, x1, x2) + q1(x0, x1, x2)x3 + l1(x0, x1, x2)x
2
3 + {q2(x0, x1, x2) +

l2(x0, x1)x3}x4 + α1x0x
2
4 + {q3(x0, x1, x2) + x0l3(x3, x4)}x5 + α2x0x

2
5 +

{q4(x0, x1) + x0l4(x2, x3, x4)}x6
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• f2 = c(x0, x1, x2)+q1(x0, x1, x2)x3+l1(x0, x1)x
2
3+{q2(x0, x1, x2)+l2(x0, x1)x3}x4+

l3(x0, x1)x
2
4+{q3(x0, x1)+l4(x0, x1)x2+l5(x0, x1)x3+α1x0x4}x5+α2x0x

2
5+

{q4(x0, x1) + l6(x0, x1)x2 + α3x0x3}x6

• f3 = c(x0, x1, x2)+q1(x0, x1, x2)x3+l1(x0, x1)x
2
3+{q2(x0, x1, x2)+l2(x0, x1)x3}x4+

l3(x0, x1)x
2
4 + {q3(x0, x1, x2) + x0l4(x3, x4)}x5 + α1x0x

2
5 + {q4(x0, x1) +

l5(x0, x1)x2 + x0l6(x3, x4)}x6

• f4 = c(x0, x1, x2)+{q1(x0, x1)+l1(x0, x1)x2}x3+l2(x0, x1)x
2
3+{q2(x0, x1)+

l3(x0, x1)x2 + l4(x0, x1)x3}x4 + l5(x0, x1)x
2
4 + {q3(x0, x1) + l6(x0, x1)x2 +

l7(x0, x1)x3+ l8(x0, x1)x4}x5+ l9(x0, x1)x
2
5+ {q4(x0, x1)+ l10(x0, x1)x2+

l11(x0, x1)x3 + l12(x0, x1)x4 + l13(x0, x1)x5}x6 + l14(x0, x1)x
2
6

• f5 = c(x0, x1, x2, x3)+{q1(x0, x1, x2)+ l1(x0, x1, x2)x3}x4+ l2(x0, x1)x
2
4+

{q2(x0, x1, x2) + l3(x0, x1)x3 + α1x0x4}x5 + {q3(x0, x1) + l4(x0, x1)x2 +
α2x0x3}x6

• f6 = c(x0, x1, x2, x3)+{q1(x0, x1, x2)+ l1(x0, x1, x2)x3}x4+ l2(x0, x1)x
2
4+

{q2(x0, x1, x2) + l3(x0, x1)x3 + α1x0x4}x5 + {q3(x0, x1) + x0l4(x2, x3)}x6

• f7 = c(x0, x1, x2, x3)+q1(x0, x1, x2, x3)x4+l1(x0, x1, x2)x
2
4+{q2(x0, x1, x2)+

l2(x0, x1)x3 + α1x0x4}x5 + {q3(x0, x1) + x0l3(x2, x3)}x6

• f8 = c(x0, x1, x2, x3)+q1(x0, x1, x2, x3)x4+ l1(x0, x1)x
2
4+{q2(x0, x1, x2)+

l2(x0, x1, x2)x3 + α1x0x4}x5 + α2x0x
2
5 + {q3(x0, x1) + α3x0x2}x6

• f9 = c(x0, x1, x2, x3)+{q1(x0, x1, x2)+α1x0x3}x4+α2x0x
2
4+{q2(x0, x1, x2)+

x0l1(x3, x4)}x5 + α3x0x
2
5 + {q3(x0, x1, x2) + x0l2(x3, x4, x5)}x6 + α4x0x

2
6

• f10 = c(x0, x1, x2, x3)+{q1(x0, x1)+l1(x0, x1)x2+l2(x0, x1)x3}x4+l3(x0, x1)x
2
4+

{q2(x0, x1) + l4(x0, x1)x2 + l5(x0, x1)x3 + l6(x0, x1)x4}x5 + l7(x0, x1)x
2
5 +

{q3(x0, x1) + l8(x0, x1)x2 + l9(x0, x1)x3}x6

• f11 = c(x0, x1, x2, x3)+{q1(x0, x1)+l1(x0, x1)x2+l2(x0, x1)x3}x4+α1x0x
2
4+

{q2(x0, x1)+l4(x0, x1)x2+l5(x0, x1)x3+α2x0x4}x5+α3x0x
2
5+{l7(x0, x1)x2+

l8(x0, x1)x3 + x0l9(x4, x5)}x6 + α4x0x
2
6

• f12 = c(x0, x1, x2, x3)+q1(x0, x1, x2, x3)x4+l1(x0, x1)x
2
4+{q2(x0, x1, x2, x3)+

α1x0x4}x5 + {q3(x0, x1) + x0l2(x2, x3)}x6

• f13 = c(x0, x1, x2, x3) + {q1(x0, x1, x2) + l1(x0, x1, x2)x3}x4 + α1x0x
2
4 +

{q2(x0, x1, x2) + l2(x0, x1, x2)x3 +α2x0x4}x5 +α3x0x
2
5 + {q3(x0, x1, x2) +

α4x0x3}x6

• f14 = c(x0, x1, x2, x3)+{q1(x0, x1, x2)+l1(x0, x1, x2)x3}x4+l2(x0, x1, x2)x
2
4+

{q2(x0, x1, x2) + l3(x0, x1, x2)x3 + l4(x0, x1, x2)x4}x5 + l5(x0, x1, x2)x
2
5 +

q3(x0, x1, x2)x6

• f15 = c(x0, x1, x2, x3, x4)+x0l1(x0, x1, x2, x3, x4)x5+α1x0x
2
5+x0l2(x0, x1, x2, x3, x4, x5)x6+

α2x0x
2
6
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• f16 = c(x0, x1, x2, x3, x4)+{q1(x0, x1, x2)+x0l1(x3, x4)}x5+{q2(x0, x1, x2)+
x0l2(x3, x4)}x6

• f17 = c(x0, x1, x2, x3, x4)+{q1(x0, x1)+l1(x0, x1)x2+l2(x0, x1)x3+l3(x0, x1)x4}x5+
α1x0x

2
5 + {q2(x0, x1) + x0l4(x2, x3, x4)}x6

• f18 = c(x0, x1, x2, x3, x4)+{q1(x0, x1, x2)+l1(x0, x1, x2)x3+l2(x0, x1, x2)x4}x5+
q2(x0, x1, x2)x6

• f19 = c(x0, x1, x2, x3, x4)+{q1(x0, x1)+l1(x0, x1)x2+l2(x0, x1)x3+l3(x0, x1)x4}x5+
{q2(x0, x1) + l4(x0, x1)x2 + l5(x0, x1)x3 + l6(x0, x1)x4}x6

• f20 = c(x0, x1, x2, x3, x4) + q1(x0, x1, x2, x3)x5 + q2(x0, x1, x2, x3)x6

• f21 = c(x0, x1, x2, x3, x4, x5) + q(x0, x1)x6

• f22 = c(x0, x1, x2, x3, x4, x5) + x0l(x0, x1, x2, x3, x4, x5)x6

For an element σ in SL(7) and J ⊆ I, we set Jσ = ∪fSupp(f
σ), where f runs

through all polynomials with Supp(f) ⊆ J.

Definition 3.3. We denote

I(rk)≥0 ⊆ I(rl)≥0 mod SL(7)

when there exists σ ∈ SL(7) such that I(rk)σ≥0 ⊆ I(rl)≥0 and say that I(rk)≥0 is
included in I(rl)≥0 modulo SL(7).

We construct a smaller subset M′ of M such that (1) any element I(rk)≥0

in M is included in some element I(rl)≥0 in M′ mod SL(7), (2) any element
I(rk)≥0 in M′ is not included in any other I(rl)≥0 in M′ mod SL(7) (1 ≤ l ≤ 22)

Proposition 3.4. There are two relations

• I(r21)≥0 ⊆ I(r22)≥0 mod SL(7)

• I(r22)≥0 ⊆ I(r21)≥0 mod SL(7).

Proof. f22 = c(x0, · · · , x5) + x0l(x0, · · · , x5)x6

≡ c(x0, · · · , x5) + x0l(x0, x1)x6

≡ c(x0, · · · , x5) + q(x0, x1)x6

= f21
Here ≡ means equality after an SL(7) change of coordinates.

From this proposition, we can remove f22 from the list. Thus, we obtain a
list of 21 types of cubic fivefolds.

Proposition 3.5. For any 1 ≤ k, l ≤ 21 with k 6= l, there is no inclusion

I(rk)≥0 ⊆ I(rl)≥0 mod SL(7).
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Proof. The proof is deferred to Section 7. For now, we take this fact for granted
and proceed with the argument. Consequently, we obtain the following theorem.

Theorem 3.6. The moduli space of strictly semistable cubic fivefolds has 21
irreducible components, represented by f1, f2, . . . , f21.

4 Closed orbits of 21 families

In this section, we find the closed orbits in the 21 families of strictly semistable
cubic fivefolds. We define λk(t) : Gm → SL(7) as 1-PSs corresponding to rk.
We shall use the following convex–geometric criterion repeatedly in this section,
so we record it at the outset.

For the following theorem, see [PV94].

Theorem 4.1 (Convex-hull criterion). Let T be an algebraic torus acting lin-
early on a finite-dimensional vector space, V , and let v ∈ V . Subsequently, the
following conditions are equivalent:

(1) the T -orbit T · v is closed in V ;

(2) 0 is an interior point of the convex-hull of Supp(v) in X(T )R.

Here, Supp(v) denotes the set of T -weights that occur in v, and X(T )R is the
real vector space spanned by the character lattice X(T ).

The following series of definitions and theorems will be extremely useful for
determining polystability in cases where the centralizer is not a torus and the
convex-hull criterion cannot be applied. Because they will be used repeatedly
from this point on, we state them here beforehand.

Notation 4.2. Let G be a reductive algebraic group, and let X be an affine
variety equipped with an algebraic G-action.

(1) We denote by Y (G) the set of one-parameter subgroups of G.

(2) When x ∈ X, we put Λx = {λ(t) ∈ Y (G) : limt→0 λ(t) · x exists}.

(3) When λ ∈ Y (G), we define P (λ) = {g ∈ G : limt→0 λ(t) ·g ·λ(t)−1 exists}.
It is a parabolic subgroup of G.

Definition 4.3. We say that a subset Λ ⊂ Y (G) is symmetric if given any
λ ∈ Λ, there is another 1-PS λ′ ∈ Λ such that P (λ) ∩ P (λ′) is a Levi subgroup
of both P (λ) and P (λ′).

We need the following theorem (Theorem 1.1 of [CF12]):

Theorem 4.4. (Casimiro–Florentino criterion) Let G be a reductive algebraic
group and X be an affine G-variety. Then, a point x ∈ X is polystable if and
only if Λx is symmetric.
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Lemma 4.5 (rank 1 symmetry for Casimiro–Florentino). Let G be a reductive
algebraic group acting on an affine G-variety X, and let x ∈ X. Assume that
there exists a one-parameter subgroup µ ∈ Y (G) such that

Λx = {µk | k ∈ Z} ∪ {0}, µk(t) := µ(tk),

where 0 denotes the trivial 1-PS. Then Λx is symmetric in the sense of Defi-
nition 4.3. Consequently, by the Casimiro–Florentino criterion (Theorem 4.4),
the point x is polystable.

Proof. Fix k 6= 0. It is standard that P (µk) and P (µ−k) are opposite parabolic
subgroups and that

P (µk) ∩ P (µ−k) = CG

(
µ(Gm)

)
which is a Levi subgroup of both P (µk) and P (µ−k). The inclusion CG

(
µ(Gm)

)
⊂

P (µk) ∩ P (µ−k) is immediate: if g centralizes µ(Gm), then µk(t) g µk(t)
−1 = g

for all t ∈ Gm, so both limits as t → 0 and t → ∞ exist. For the reverse
inclusion, take g ∈ P (µk) ∩ P (µ−k) and consider

ϕ : Gm −→ G, ϕ(t) := µk(t) g µk(t)
−1.

By assumption, the limits limt→0 ϕ(t) and limt→∞ ϕ(t) both exist (the latter
because g ∈ P (µ−k) and ϕ(1/s) = µ−k(s) g µ−k(s)

−1 for s → 0). Hence, ϕ
extends to a morphism ϕ̃ : P1 → G. As G is affine, ϕ̃ is constant; in particular,

µk(t) g µk(t)
−1 = ϕ(t) = ϕ(1) = g for all t ∈ Gm.

Thus, g centralizes µk(Gm) = µ(Gm), i.e. g ∈ CG

(
µ(Gm)

)
. This proves P (µk)∩

P (µ−k) = CG

(
µ(Gm)

)
.

Based on the hypothesis µk, µ−k ∈ Λx, so the requirement in Definition 4.3
is satisfied for every λ = µk. Hence, Λx is symmetric. The last assertion follows
from Theorem 4.4 (Casimiro–Florentino).

Convention 4.6. Throughout this section, we fix the following setup and no-
tation.

(1) Coordinates and the maximal torus. We work on W = Sym3C7

with homogeneous coordinates (x0, . . . , x6). We fix the diagonal maximal torus
T ⊂ SL(7) acting by diag(µ0, . . . , µ6) with

∏
i µi = 1. A one-parameter subgroup

(1-PS) is written as

λ(t) = diag
(
ta0 , . . . , ta6

)
,

6∑
i=0

ai = 0.

(2) 1-PS limits and centralizer reduction. For each k ∈ {1, . . . , 21} let
λk correspond to rk in Proposition 2.3, and let fk be the generic member from
Theorem 3.2. We set the 1-PS limit

ϕk := lim
t→0

λk(t) · fk.
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Put H := λk(Gm) and write CG(H) for the centralizer in G = SL(7). Let
WH ⊂ W be the H-fixed subspace. By Luna’s centralizer reduction [Lun75],
closedness of SL(7) · ϕk in P(W )ss is equivalent to closedness of CG(H) · ϕk in
WH .

(3) Two criteria for polystability. If CG(H) is a torus, we certify closed-
ness by the convex-hull criterion (Theorem 4.1). If CG(H) is non-toric, we use
the Casimiro–Florentino criterion (Theorem 4.4) as follows: for λ ∈ Y (CG(H))
we write wtλ(xi) for the λ-weight on xi, and w(m) for the induced weight of a
monomial m. We denote by S the linear constraint coming from det = 1 on
CG(H) (the “trace” of block weights), so S = 0 for every λ. We then exhibit a
positive linear identity∑

j

cj w(mj) = C · S (cj > 0, C > 0).

If λ ∈ Λϕk
, then every w(mj) ≥ 0 and S = 0; hence, all w(mj) = 0; solving

yields a symmetric 1-PS µk, so Λϕk
is symmetric and ϕk is polystable.

(4) Normal forms and coefficient normalizations. Passing to “nor-
mal form,” we are allowed to: (i) multiply by a nonzero scalar; (ii) act by
CG(H)/H (e.g., block GL(2), GL(3) actions) to diagonalize blocks; and (iii)
use diagonal elements of T (with

∏
µi = 1) to normalize nonzero coefficients to

1. Parameters (α, ρ, σ, . . . ) record the residual moduli.
(5) Dimension count. Component dimensions are computed as

dim(WH)− dimeff

(
CG(H)

)
− 1,

where dimeff is the dimension of the effective CG(H)-action on WH (central
tori acting trivially are subtracted). We state explicitly when a central factor
acts trivially.

(6) Weights and symbols. We freely reuse symbols ai for nonzero coeffi-
cients of ϕk prior to normalization. For 1-PS families obtained in the CF-check,
we write µk(t). All such conventions are in force throughout § 4.

Let us now determine, for each k = 1, 2, . . . , 21, a polynomial whose SL(7)-
orbit is closed. The procedure is uniform across all cases. First, we take a
1-PS limit to produce a candidate ϕk for a polystable point. Next, to apply
Luna’s criterion, we take the stabilizer H ⊂ G = SL(7) of ϕk; we choose H
as large as possible so that its centralizer CG(H) is as small as possible, which
simplifies the closedness check. Write WH for the H-fixed locus in the ambient
representation W = Sym3C7. If CG(H) is a torus, we apply the convex-hull
criterion (Theorem4.1) to show that CG(H) · ϕk is closed in WH ; if CG(H) is
not a torus, we instead apply the Casimiro–Florentino criterion (Theorem 4.4)
to obtain the same conclusion. In either case, CG(H) · ϕk is closed in WH ;
hence, by Luna’s criterion, the orbit SL(7) ·ϕk is closed in P(Sym3C7)ss. Lastly,
by determining a normal form of ϕk under the action of CG(H)/H, we fix the
dimension of the corresponding component of the moduli space for that k.
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4.1 Case k = 1

1-PS limit. Set

λ1(t) = diag
(
t8, t3, t2, t−1, t−2, t−4, t−6

)
, t ∈ Gm.

For a generic f1 as in Section 3, the 1-PS limit is

ϕ1 := lim
t→0

λ1(t)·f1 = a1 x2x
2
3+a2 x1x3x4+a3 x

2
2x5+a4 x0x

2
5+a5 x

2
1x6+a6 x0x4x6.

H and CG(H). Let H = λ1(Gm). The diagonal weights on 〈x0, . . . , x6〉 are
pairwise distinct; hence, CG(H) = T (the maximal diagonal torus). Each mono-
mial of ϕ1 has H-weight 0, so ϕ1 ∈ WH .

Polystability (Luna + convex-hull). By Luna’s criterion (see [Lun75]),
closedness of the SL(7)-orbit of ϕ1 is equivalent to closedness of the T -orbit in
WH . By the convex-hull criterion (Theorem 4.1), it suffices to check that 0 is
an interior point of Conv(Supp(ϕ1)) ⊂ X(T )R ' R7/R(1, . . . , 1). This holds
because the exponent vectors of the six monomials satisfy

2(0, 0, 1, 2, 0, 0, 0) + 2(0, 1, 0, 1, 1, 0, 0) + 2(0, 0, 2, 0, 0, 1, 0)

+ 2(1, 0, 0, 0, 0, 2, 0) + 2(0, 2, 0, 0, 0, 0, 1) + 4(1, 0, 0, 0, 1, 0, 1) = 6(1, 1, 1, 1, 1, 1, 1),
(1)

Hence, ϕ1 is polystable and SL(7) · ϕ1 is closed.

Normal form and component dimension. Let diag(µ0, . . . , µ6) ∈ T with∏6
i=0 µi = 1. Along with the overall projective scaling, this acts on the six

coefficients of ϕ1 via the characters determined by the exponent vectors in (1);
we may normalize all six coefficients to 1 simultaneously. Thus, a normal form
is

ϕnf
1 = x2x

2
3 + x1x3x4 + x2

2x5 + x0x
2
5 + x2

1x6 + x0x4x6.

The residual T -stabilizer is finite; hence, the corresponding component of the
moduli is zero-dimensional.

4.2 Case k = 2

1-PS limit. Set

λ2(t) = diag
(
t6, t4, t, t−1, t−2, t−3, t−5

)
, t ∈ Gm.

For a generic f2 as in Section 3, the 1-PS limit is

ϕ2 := lim
t→0

λ2(t)·f2 = a1x
2
2x4+a2x1x

2
4+a3x1x3x5+a4x0x

2
5+a5x1x2x6+a6x0x3x6.

H and CG(H). Let H = λ2(Gm). The diagonal weights on 〈x0, . . . , x6〉 are
pairwise distinct; hence, CG(H) = T (the maximal diagonal torus). Each mono-
mial of ϕ2 has H-weight 0, so ϕ2 ∈ WH .
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Polystability (Luna + convex-hull). By Luna’s criterion, closedness of
the SL(7)-orbit of ϕ2 is equivalent to closedness of the T -orbit in the H-fixed
subspace. By the convex-hull criterion (Theorem 4.1), it suffices to check that
0 lies in the interior of Conv(Supp(ϕ2)) ⊂ X(T )R ' R7/R(1, . . . , 1). This holds
because

2(0, 0, 2, 0, 1, 0, 0) + 2(0, 1, 0, 0, 2, 0, 0) + 2(0, 1, 0, 1, 0, 1, 0)

+ 2(1, 0, 0, 0, 0, 2, 0) + 2(0, 1, 1, 0, 0, 0, 1) + 4(1, 0, 0, 1, 0, 0, 1) = 6(1, 1, 1, 1, 1, 1, 1),
(2)

written in terms of the exponent vectors of the six monomials of ϕ2. Hence, ϕ2

is polystable and SL(7) · ϕ2 is closed.

Normal form and component dimension. A diagonal scaling diag(µ0, . . . , µ6) ∈
T with

∏
µi = 1, together with an overall scalar, acts on the six coefficients

via the characters determined by the exponent vectors in (2); thus we may
normalize all six coefficients to 1 simultaneously. Therefore, a normal form is

ϕnf
2 = x2

2x4 + x1x
2
4 + x1x3x5 + x0x

2
5 + x1x2x6 + x0x3x6.

The residual T -stabilizer is finite; hence, the corresponding component Φ2 of
the moduli is zero-dimensional.

4.3 Case k = 3

1-PS limit. Set

λ3(t) = diag
(
t4, t2, t, t−1, t−1, t−2, t−3

)
, t ∈ Gm.

For a generic f3 as in Section 3, the 1-PS limit is

ϕ3 := lim
t→0

λ3(t) · f3 = a1 x1x
2
3 + a2 x1x3x4 + a3 x1x

2
4

+ a4 x
2
2x5 + a5 x0x

2
5 + a6 x1x2x6 + a7 x0x3x6 + a8 x0x4x6.

H and CG(H). Let H = λ3(Gm). The multiplicities of the diagonal weights
on 〈x0, . . . , x6〉 are 1 on x0, x1, x2, x5, x6 and 2 on 〈x3, x4〉; hence,

CG(H) =

{
diag(α0, α1, α2)⊕A⊕ diag(α5, α6) :

αi ∈ Gm, A ∈ GL(2), α0α1α2 det(A)α5α6 = 1

}
∼= SL(2)×G5

m.

Each monomial of ϕ3 has H-weight 0, so ϕ3 is H-fixed.

Polystability (Luna + Casimiro–Florentino). By Luna’s slice/centralizer
reduction, the closedness of the SL(7)-orbit of ϕ3 is equivalent to polystability
for the CG(H)-action on the H-fixed subspace. After conjugating inside the
SL(2)-block, any λ ∈ Y (CG(H)) may be chosen with weights

wt(x0, . . . , x6) = (a0, a1, a2, c+n, c−n, a5, a6), S := a0+a1+a2+2c+a5+a6 = 0
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(as in Convention 4.6. Let wi be the λ-weight of the i-th monomial of ϕ3. Then

w1 = a1 + 2(c+ n), w2 = a1 + 2c, w3 = a1 + 2(c− n),

w4 = 2a2 + a5, w5 = a0 + 2a5, w6 = a1 + a2 + a6,

w7 = a0 + (c+ n) + a6, w8 = a0 + (c− n) + a6.

A direct computation yields the positive linear identity

w1 + w2 + 2w3 + 2w4 + 2w5 + 2w6 + 3w7 + w8 = 6S. (3)

If λ ∈ Λϕ3 , then all wi ≥ 0 and S = 0; by (3) they must all vanish. Solving
gives

n = 0, a1 = −2c, a5 = −2a2, a0 = 4a2, a6 = 2c− a2, a2 = −c.

Thus, with k ∈ Z,

µk(t) := diag
(
t4k, t2k, tk, t−k, t−k, t−2k, t−3k

)
, Λϕ3 = {µk | k ∈ Z} ∪ {0}.

Therefore Λϕ3
is symmetric, and by the Casimiro–Florentino criterion ϕ3 is

polystable; in particular, SL(7) · ϕ3 is closed.

Normal form and component dimension. On the H-fixed slice, the eight
weight-zero monomials are

x1x
2
3, x1x3x4, x1x

2
4, x2

2x5, x0x
2
5, x1x2x6, x0x3x6, x0x4x6,

Therefore, WH denotes their span. i.e.

WH = 〈x1〉 ⊗ Sym2〈x3, x4〉︸ ︷︷ ︸
(I)

⊕ Sym2〈x2〉 ⊗ x5︸ ︷︷ ︸
(II)

⊕x0 ⊗ Sym2〈x5〉︸ ︷︷ ︸
(III)

⊕x0 ⊗ 〈x3, x4〉 ⊗ x6︸ ︷︷ ︸
(IV)

.

The centralizer is
CG(H) ∼= SL(2)×G5

m,

acting by SL(2) on 〈x3, x4〉 and by a diagonal torus on 〈x0, x1, x2, x5, x6〉 (subject
to the product-one condition).

(I) binary quadratic on 〈x3, x4〉. Write the x1-part as a binary quadratic
Q = a1x

2
3 + a2x3x4 + a3x

2
4 ∈ Sym2〈x3, x4〉. As ∆(Q) is SL(2)-invariant while

rescaling x1 scales Q (and hence ∆) homogenously, for a generic (nondegenerate)
Q, there exists A ∈ SL(2) and a rescaling of x1 such that Q ∼ x2

3 + x3x4 + x2
4.

Thus, the block (I) is fixed to x1x
2
3 + x1x3x4 + x1x

2
4.

(II)(III)(IV) torus normalizations. Let T ′ = {diag(µ0, µ1, µ2) ⊕ I2 ⊕
diag(µ5, µ6) : µ0µ1µ2µ5µ6 = 1}. Under T ′, the coefficients transform by the
characters determined by exponent vectors: x2

2x5 by µ2
2µ5, x0x

2
5 by µ0µ

2
5, x1x2x6

by µ1µ2µ6, while x0x3x6 and x0x4x6 both by µ0µ6. Using µ0, µ1, µ2, µ5, µ6 (to-
gether with an overall scalar), we set x2

2x5, x0x
2
5, and x1x2x6 to have coefficient

1.
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The remaining ratio. The pair (x0x3x6, x0x4x6) is scaled by the same torus
character µ0µ6, and the stabilizer in SL(2) of x2

3 + x3x4 + x2
4 is finite; hence,

only the ratio remains. This yields the one-parameter normal form

ϕnf
3 (α) = x1x

2
3+x1x3x4+x1x

2
4+x2

2x5+x0x
2
5+x1x2x6+x0x3x6+αx0x4x6, α ∈ C×.

For general α the residual stabilizer is finite, and the corresponding component
Φ3 is one-dimensional.

4.4 Case k = 4

1-PS limit.

λ4(t) = diag
(
t3, t2, t, 1, t−1, t−2, t−3

)
, t ∈ Gm.

For a generic f4 as in Section 3, the 1-PS limit is

ϕ4 := lim
t→0

λ4(t) · f4

= a1 x
3
3 + a2 x2x3x4 + a3 x1x

2
4 + a4 x

2
2x5 + a5 x1x3x5 + a6 x0x4x5 + a7 x1x2x6 + a8 x0x3x6.

H and CG(H). Let H = λ4(Gm). The diagonal weights on 〈x0, . . . , x6〉 are
pairwise distinct; hence, CG(H) = T (the maximal diagonal torus). Each mono-
mial of ϕ4 has H-weight 0, so ϕ4 ∈ WH .

Polystability (Luna + convex-hull). By Luna’s criterion, closedness of
the SL(7)-orbit of ϕ4 is equivalent to closedness of the T -orbit in WH . By the
convex-hull criterion (Theorem 4.1), it suffices to check that 0 is an interior
point of Conv(Supp(ϕ4)) ⊂ X(T )R ∼= R7/R(1, . . . , 1), which holds because the
exponent vectors satisfy

(0, 0, 0, 3, 0, 0, 0) + (0, 0, 1, 1, 1, 0, 0) + (0, 1, 0, 0, 2, 0, 0) + (0, 0, 2, 0, 0, 1, 0)

+ 2(0, 1, 0, 1, 0, 1, 0) + 6(1, 0, 0, 0, 1, 1, 0) + 6(0, 1, 1, 0, 0, 0, 1)

+ 3(1, 0, 0, 1, 0, 0, 1) = 9(1, 1, 1, 1, 1, 1, 1).

(4)

Hence, ϕ4 is polystable and SL(7) · ϕ4 is closed.

Normal form and component dimension. A diagonal scaling diag(µ0, . . . , µ6) ∈
T with

∏
µi = 1, together with an overall scalar, acts on the eight coefficients

via the characters determined by the exponent vectors above; we may normalize
seven of them to 1. Thus, a normal form is

ϕnf
4 (α) = x3

3+x2x3x4+x1x
2
4+x2

2x5+x1x3x5+x0x4x5+x1x2x6+αx0x3x6, α ∈ C∗.

The residual T -stabilizer is finite; hence, the corresponding component Φ4 of
the moduli is one-dimensional.
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4.5 Case k = 5

1-PS limit. Set

λ5(t) = diag
(
t4, t2, t, 1, t−1, t−2, t−4

)
, t ∈ Gm.

For a generic f5 as in Section 3, the 1-PS limit is

ϕ5 := lim
t→0

λ5(t)·f5 = a1x
3
3+a2x2x3x4+a3x1x

2
4+a4x

2
2x5+a5x1x3x5+a6x0x

2
5+a7x

2
1x6+a8x0x3x6.

H and CG(H). Let H = λ5(Gm). The diagonal weights on 〈x0, . . . , x6〉 are
pairwise distinct; hence, CG(H) = T (the maximal diagonal torus). Each mono-
mial of ϕ5 has H-weight 0, so ϕ5 ∈ WH .

Polystability (Luna + convex-hull). By Luna’s criterion, closedness of
the SL(7)-orbit of ϕ5 is equivalent to closedness of the T -orbit in the H-fixed
subspace. By the convex-hull criterion (Theorem 4.1), it suffices to check that
0 lies in the interior of Conv(Supp(ϕ5)) ⊂ X(T )R ∼= R7/R(1, . . . , 1). This holds
because the exponent vectors of the eight monomials satisfy

(0, 0, 0, 3, 0, 0, 0) + (0, 0, 1, 1, 1, 0, 0)

+ 10(0, 1, 0, 0, 2, 0, 0) + 10(0, 0, 2, 0, 0, 1, 0)

+ (0, 1, 0, 1, 0, 1, 0) + 5(1, 0, 0, 0, 0, 2, 0)

+ 5(0, 2, 0, 0, 0, 0, 1) + 16(1, 0, 0, 1, 0, 0, 1)

= 21(1, 1, 1, 1, 1, 1, 1),

(5)

Hence, ϕ5 is polystable and SL(7) · ϕ5 is closed.

Normal form and component dimension. A diagonal scaling diag(µ0, . . . , µ6) ∈
T with

∏
µi = 1, together with projective rescaling, acts on the eight coefficients

via the characters determined by the exponent vectors in (5); we can normalize
seven of them to 1. A convenient normal form is

ϕnf
5 (α) = x3

3+x2x3x4+x1x
2
4+x2

2x5+x1x3x5+x0x
2
5+x2

1x6+αx0x3x6, α ∈ C×.

The residual T -stabilizer is finite; hence, the corresponding component Φ5 of
the moduli is one-dimensional.

4.6 Case k = 6

1-PS limit. Set

λ6(t) = diag
(
t6, t4, t2, t, t−2, t−3, t−8

)
, t ∈ Gm.

For a generic f6 as in Section 3, the 1-PS limit is

ϕ6 := lim
t→0

λ6(t)·f6 = a1 x
2
3x4+a2 x1x

2
4+a3 x2x3x5+a4 x0x

2
5+a5 x

2
1x6+a6 x0x2x6.

18



H and CG(H). Let H = λ6(Gm). The diagonal weights on 〈x0, . . . , x6〉 are
pairwise distinct; hence, CG(H) = T (the maximal diagonal torus). Each mono-
mial of ϕ6 has H-weight 0, so ϕ6 lies in the H-fixed subspace.

Polystability (Luna + convex-hull). By Luna’s criterion, closedness of
the SL(7)-orbit of ϕ6 is equivalent to closedness of the T -orbit in the H-fixed
subspace. By the convex-hull criterion (Theorem 4.1), it suffices to check that 0
is an interior point of Conv(Supp(ϕ6)) ⊂ X(T )R ∼= R7/R(1, . . . , 1). This holds
because

(0, 0, 0, 2, 1, 0, 0) + (0, 1, 0, 0, 2, 0, 0) + (0, 0, 1, 1, 0, 1, 0)

+ (1, 0, 0, 0, 0, 2, 0) + (0, 2, 0, 0, 0, 0, 1) + 2(1, 0, 1, 0, 0, 0, 1)

= 3(1, 1, 1, 1, 1, 1, 1),

(6)

written in terms of the exponent vectors of the six monomials of ϕ6. Hence, ϕ6

is polystable and SL(7) · ϕ6 is closed.

Normal form and component dimension. A diagonal scaling diag(µ0, . . . , µ6) ∈
T with

∏
µi = 1, together with an overall scalar, acts on the six coefficients via

the characters determined by the exponent vectors in (6); we may normalize all
six coefficients to 1 simultaneously. Thus, a normal form is

ϕnf
6 = x2

3x4 + x1x
2
4 + x2x3x5 + x0x

2
5 + x2

1x6 + x0x2x6.

The residual T -stabilizer is finite; hence, the corresponding component Φ6 of
the moduli is zero-dimensional.

4.7 Case k = 7

1-PS limit. Set

λ7(t) = diag
(
t5, t3, t2, t, t−1, t−4, t−6

)
, t ∈ Gm.

For a generic f7 as in Section 3, the 1-PS limit is

ϕ7 := lim
t→0

λ7(t)·f7 = a1 x2x
2
4+a2 x

2
2x5+a3 x1x3x5+a4 x0x4x5+a5 x

2
1x6+a6 x0x3x6.

H and CG(H). Let H = λ7(Gm). The diagonal weights on 〈x0, . . . , x6〉 are
pairwise distinct; hence, CG(H) = T (the maximal diagonal torus). Each mono-
mial of ϕ7 has H-weight 0, so ϕ7 ∈ WH .

Polystability (Luna + convex-hull). Based on Luna’s criterion, closedness
of the SL(7)-orbit of ϕ7 is equivalent to closedness of the T -orbit in the H-fixed
subspace. By Theorem 4.1, it suffices to check that 0 is an interior point of
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Conv(Supp(ϕ7)) ⊂ X(T )R ∼= R7/R(1, . . . , 1). This holds because the exponent
vectors of the six monomials of ϕ7 satisfy the positive relation

(0, 0, 1, 0, 2, 0, 0) + (0, 0, 2, 0, 0, 1, 0) + (0, 1, 0, 1, 0, 1, 0)

+ (1, 0, 0, 0, 1, 1, 0) + (0, 2, 0, 0, 0, 0, 1) + 2(1, 0, 0, 1, 0, 0, 1)

= 3(1, 1, 1, 1, 1, 1, 1).

(7)

Hence, ϕ7 is polystable and SL(7) · ϕ7 is closed.

Normal form and component dimension. A diagonal scaling diag(µ0, . . . , µ6) ∈
T with

∏
µi = 1, together with an overall scalar, acts on the six coefficients

via the characters determined by the exponent vectors in (7); hence, we may
normalize all six coefficients to 1 simultaneously. A normal form is therefore

ϕnf
7 = x2x

2
4 + x2

2x5 + x1x3x5 + x0x4x5 + x2
1x6 + x0x3x6.

The residual T -stabilizer is finite; hence, the corresponding component Φ7 of
the moduli is zero-dimensional.

4.8 Case k = 8

1-PS limit. Set

λ8(t) = diag
(
t4, t, t, 1, t−2, t−2, t−2

)
, t ∈ Gm.

For a generic f8 as in Section 3, the 1-PS limit is

ϕ8 := lim
t→0

λ8(t) · f8 = a1x
3
3 + a2x

2
1x4 + a3x1x2x4 + a4x

2
2x4 + a6x

2
1x5 + a7x1x2x5 + a8x

2
2x5

+ a11x
2
1x6 + a12x1x2x6 + a13x

2
2x6 + a5x0x

2
4 + a9x0x4x5 + a14x0x4x6

+ a10x0x
2
5 + a15x0x5x6 + a16x0x

2
6.

H and CG(H). LetH = λ8(Gm). The weights on 〈x0, . . . , x6〉 are (4, 1, 1, 0,−2,−2,−2)
with multiplicities (1, 2, 1, 3); hence,

CG(H) =
{
diag(α)⊕A⊕diag(β)⊕B : α, β ∈ Gm, A ∈ GL(2), B ∈ GL(3), αβ det(A) det(B) = 1

}
.

Thus CG(H) ∼=
(
Gm × GL(2) × Gm × GL(3)

)
∩ SL(7) and dimCG(H) = 14.

Every monomial of ϕ8 has H-weight 0; hence, ϕ8 ∈ WH .

Polystability (Luna + Casimiro–Florentino). Based on Luna’s reduc-
tion, the closedness of the SL(7)-orbit of ϕ8 is equivalent to polystability for the
CG(H)-action on WH . After conjugating inside the GL(2)- and GL(3)-blocks,
any λ ∈ Y (CG(H)) may be taken with

wt(x0, . . . , x6) = (α, s+ u, s− u, β, γ + v1, γ + v2, γ + v3),
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where α, β, s, u, γ, vi ∈ Z, v1 + v2 + v3 = 0, and

S := α+ β + 2s+ 3γ = 0

is the SL-constraint fixed in Convention 4.6. Let w(·) be the weight of a mono-
mial. A direct computation yields the positive linear identity

6∑
j=4

(
w(x2

1xj) + w(x2
2xj) + 2w(x1x2xj)

)
+ 3w(x0x

2
4) + 3w(x0x

2
5) + 3w(x0x

2
6)

+w(x0x4x5) + w(x0x4x6) + w(x0x5x6) + 4w(x3
3) = 12S.

(8)

If λ ∈ Λϕ8 , then all the above weights are ≥ 0 and S = 0; therefore, by (8) they
must all vanish. Solving gives

β = 0, v1 = v2 = v3 = 0, u = 0, 2s+ γ = 0, α+ 2γ = 0.

Putting s = k ∈ Z, we obtain

µk(t) = diag
(
t4k, tk, tk, 1, t−2k, t−2k, t−2k

)
, Λϕ8

= {µk | k ∈ Z} ∪ {0},

which is symmetric. Hence, by the Casimiro–Florentino criterion, ϕ8 is polystable.

Normal form and component dimension. On the H-fixed subspace

WH = Sym2〈x1, x2〉 ⊗ 〈x4, x5, x6〉︸ ︷︷ ︸
(I)

⊕ x0 ⊗ Sym2〈x4, x5, x6〉︸ ︷︷ ︸
(II)

⊕〈x3
3〉︸︷︷︸

(III)

,

use GL(3) on 〈x4, x5, x6〉 to diagonalize the quadratic, then the left/right actions
on Sym2〈x1, x2〉⊗〈x4, x5, x6〉 to diagonalize the 3×3 block (SVD-type reduction
under left Sym2GL(2) and right O(U, q), here U = 〈x4, x5, x6〉 and q = x2

4 +
x3
5 + x2

6 ) and normalize one diagonal entry to 1; the remaining two appear as
parameters ρ, σ. A normal form is

ϕnf
8 (ρ, σ) = x3

3+x0x
2
4+x0x

2
5+x0x

2
6+x2

1x4+ρ x1x2x5+σ x2
2x6, (ρ, σ) ∈ (C×)2.

As dimWH = 16 and the effective action has dimension 13 (after projectivizing),
the closed component has dimension 16 − 13− 1 = 2.

Remark 4.7. Here O(U, q) denotes the orthogonal group of the quadratic space
(U, q), i.e. O(U, q) = { g ∈ GL(U) | q(gu) = q(u) ∀u ∈ U}. In the chosen basis
U = 〈x4, x5, x6〉 with q = x2

4 + x2
5 + x2

6, this is {B ∈ GL3 | BTB = I3 }.

The residual T -stabilizer is finite; hence, the corresponding component Φ8

of the moduli is two-dimensional.
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4.9 Case k = 9

1-PS limit. Set

λ9(t) = diag
(
t2, t2, 1, 1, t−1, t−1, t−2

)
, t ∈ Gm.

For a generic f9 as in Section 3, the 1-PS limit is

ϕ9 := lim
t→0

λ9(t) · f9 = a1x
3
2 + a2x

2
2x3 + a3x2x

2
3 + a4x

3
3

+ a5x0x
2
4 + a6x1x

2
4 + a7x0x4x5 + a8x1x4x5

+ a9x0x
2
5 + a10x1x

2
5

+ a11x0x2x6 + a12x1x2x6 + a13x0x3x6 + a14x1x3x6.

(All monomials have H-weight 0.)

H and CG(H). LetH = λ9(Gm). TheH-weights on 〈x0, . . . , x6〉 are (2, 2, 0, 0,−1,−1,−2)
with block decomposition 〈x0, x1〉, 〈x2, x3〉, 〈x4, x5〉, 〈x6〉. Hence,

CG(H) =
{
A⊕B⊕C⊕γ : A,B,C ∈ GL(2), γ ∈ Gm, det(A) det(B) det(C)γ = 1

}
∼=

(
GL(2)3 ×Gm

)
∩ SL(7).

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ9 is equivalent to polystability for the CG(H)-
action on the H-fixed locus. After conjugating inside each GL(2)-block, any
λ ∈ Y

(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (a+u, a−u, b+v, b−v, c+w, c−w, d), S := 2a+2b+2c+d = 0.

A direct computation yields the positive linear identity[
w(x3

2) + w(x2
2x3) + w(x2x

2
3) + w(x3

3)
]

+ 2
[
w(x0x

2
4) + w(x0x4x5) + w(x0x

2
5) + w(x1x

2
4) + w(x1x4x5) + w(x1x

2
5)
]

+ 3
[
w(x0x2x6) + w(x1x2x6) + w(x0x3x6) + w(x1x3x6)

]
= 12S. (9)

If λ ∈ Λϕ9
, then all the above weights are ≥ 0 and S = 0; hence, by (9) they all

vanish. Solving gives

b = v = u = w = 0, a+ 2c = 0, a+ d = 0.

Writing a = 2k with k ∈ Z we obtain

µk(t) := diag
(
t2k, t2k, 1, 1, t−k, t−k, t−2k

)
, Λϕ9 = {µk | k ∈ Z} ∪ {0}.

Thus Λϕ9
is symmetric, and by the Casimiro–Florentino criterion ϕ9 is polystable;

in particular SL(7) · ϕ9 is closed.
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Normal form and component dimension. From now on, we normalize
coefficients under the CG(H)-action. Decompose

WH = Sym3〈x2, x3〉︸ ︷︷ ︸
(I)

⊕ 〈x0, x1〉 ⊗ Sym2〈x4, x5〉︸ ︷︷ ︸
(II)

⊕ 〈x0, x1〉 ⊗ 〈x2, x3〉 ⊗ 〈x6〉︸ ︷︷ ︸
(III)

.

(I) Binary cubic Sym3〈x2, x3〉 A general element is GL(〈x2, x3〉)-equivalent
(up to overall scaling) to

x2
2x3 + τ x2x

2
3 (τ ∈ C×),

leaving one parameter τ .

(II) 〈x0, x1〉⊗Sym2〈x4, x5〉 (2×3 block) Via the right GL(〈x4, x5〉) (through
Sym2) diagonalize a reference quadratic to q = x2

4+x2
5; the residual right group

is O(U, q) on U = 〈x4, x5〉. Using the left GL(〈x0, x1〉) together with this right
orthogonal action (an SVD-type reduction), eliminate the x4x5 cross term and
equalize the x2

4 entries. After central torus/projective scalings,

x0(x
2
4 + ρ x2

5) + x1(x
2
4 + x2

5), ρ ∈ C×.

(III) 〈x0, x1〉⊗ 〈x2, x3〉⊗ 〈x6〉 (2× 2 block) With GL(〈x0, x1〉), GL(〈x2, x3〉)
(respecting the choice in (I)), and scaling x6, we diagonalize to

x0x2x6 + x1x3x6,

and normalize the coefficients to 1.

Combining the three steps yields the normal form

φnf
9 (τ, ρ) = x2

2x3+τ x2x
2
3+x0x

2
4+ρ x0x

2
5+x1x

2
4+x1x

2
5+x0x2x6+x1x3x6, (τ, ρ) ∈ (C×)2.

As dimWH = 16 and dimCG(H) = 14, the effective action has dimension 13;
after projectivizing, we obtain 16−13−1 = 2. The residual T -stabilizer is finite;
hence, the corresponding component Φ9 of the moduli is two-dimensional.

4.10 Case k = 10

1-PS limit. Set

λ10(t) = diag
(
t2, t, 1, 1, t−1, t−1, t−1

)
, t ∈ Gm.

For a generic f10 as in Section 3, the 1-PS limit is

ϕ10 := lim
t→0

λ10(t) · f10 = a1x
3
2 + a2x

2
2x3 + a3x2x

2
3 + a4x

3
3

+ a5x1x2x4 + a6x1x3x4 + a8x1x2x5 + a9x1x3x5

+ a12x1x2x6 + a13x1x3x6

+ a7x0x
2
4 + a10x0x4x5 + a11x0x

2
5 + a14x0x4x6 + a15x0x5x6 + a16x0x

2
6.
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H and CG(H). LetH = λ10(Gm). TheH-weights on 〈x0, . . . , x6〉 are (2, 1, 0, 0,−1,−1,−1)
with block multiplicities (1, 1, 2, 3); hence,

CG(H) =
{
diag(α)⊕ diag(β)⊕A⊕B : α, β ∈ Gm, A ∈ GL(2), B ∈ GL(3), αβ det(A) det(B) = 1

}
∼=

(
Gm ×Gm ×GL(2)×GL(3)

)
∩ SL(7). (10)

Every monomial of ϕ10 has H-weight 0, so ϕ10 ∈ WH .

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ10 is equivalent to polystability for the CG(H)-
action on WH . After conjugating within the GL(2)- and GL(3)-blocks, any
λ ∈ Y

(
CG(H)

)
may be taken as

wt(x0, . . . , x6) = (α, β, s+ u, s− u, γ + v1, γ + v2, γ + v3),

where α, β, s, u, γ, vi ∈ Z with v1 + v2 + v3 = 0, and by Convention 4.6 the
SL-constraint is

S := α+ β + 2s+ 3γ = 0.

A direct computation gives the positive linear identity[
w(x3

2) + w(x2
2x3) + w(x2x

2
3) + w(x3

3)
]

+ 2
[
w(x0x

2
4) + w(x0x4x5) + w(x0x

2
5) + w(x0x4x6) + w(x0x5x6) + w(x0x

2
6)
]

+ 2
[
w(x1x2x4) + w(x1x3x4) + w(x1x2x5) + w(x1x3x5) + w(x1x2x6) + w(x1x3x6)

]
= 12S.

(11)
If λ ∈ Λϕ10

, then all the weights above are ≥ 0 and S = 0; hence, by (11), they
all vanish. Solving yields

β = −γ, s = 0, u = 0, v1 = v2 = v3 = 0, α = −2γ.

Writing γ = −k with k ∈ Z we obtain

µk(t) := diag
(
t2k, tk, 1, 1, t−k, t−k, t−k

)
, Λϕ10 = {µk | k ∈ Z} ∪ {0}.

Thus Λϕ10
is symmetric, and by the Casimiro–Florentino criterion, ϕ10 is polystable;

in particular SL(7) · ϕ10 is closed.

Normal form and component dimension. We decompose the H-fixed lo-
cus as

WH = Sym3〈x2, x3〉︸ ︷︷ ︸
(I)

⊕ x1 ⊗ 〈x2, x3〉 ⊗ 〈x4, x5, x6〉︸ ︷︷ ︸
(II)

⊕ x0 ⊗ Sym2〈x4, x5, x6〉︸ ︷︷ ︸
(III)

.

We normalize coefficients block by block under the CG(H)-action.
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(I) Binary cubic Sym3〈x2, x3〉 Using GL(〈x2, x3〉) and overall scaling, a gen-
eral binary cubic is equivalent to

x2
2x3 + τ x2x

2
3 (τ ∈ C×),

which fixes one modulus τ .

(III) Three-variable quadratic x0⊗Sym2〈x4, x5, x6〉 Acting by GL(〈x4, x5, x6〉)
on the Sym2-representation, a nondegenerate quadratic form can be diagonal-
ized to the identity. Using the central torus and projective scaling, we normalize
the coefficients to 1:

x0x
2
4 + x0x

2
5 + x0x

2
6.

After this step, the residual right action is the isometry group of the diagonal
form (orthogonal group).

(II) The 2 × 3 block x1 ⊗ 〈x2, x3〉 ⊗ 〈x4, x5, x6〉 The coefficients in this
block can be arranged as a 2 × 3 matrix M . After (III), the right group is
the isometry group of the diagonal quadratic on 〈x4, x5, x6〉, and the left group
is GL(〈x2, x3〉). For a general element (rankM = 2), a simultaneous (left GL(2),
right isometry) SVD-type reduction yields

M ∼
(
1 0 0

0 ρ 0

)
⇐⇒ x1x2x4 + ρ x1x3x5,

where ρ ∈ C×. Here, the cross terms are eliminated by the right isometry,
column choices are coordinated by the left action, and the remaining nonzero
entries are scaled to the displayed normal form.

Combining (I)-(III), the convenient normal form for Case k = 10 is

φnf
10(τ, ρ) = x2

2x3+τ x2x
2
3+x0x

2
4+x0x

2
5+x0x

2
6+x1x2x4+ρ x1x3x5, (τ, ρ) ∈ (C×)2.

As dimWH = 16 and dimCG(H) = 14, the effective action has dimension 13;
after projectivizing, we obtain 16−13−1 = 2. The residual T -stabilizer is finite;
hence, the corresponding component Φ10 of the moduli is two-dimensional.

4.11 Case k = 11

1-PS limit. Set

λ11(t) = diag
(
t2, 1, 1, 1, 1, t−1, t−1

)
, t ∈ Gm.

For a generic f11 as in Section 3, the 1-PS limit is

ϕ11 := lim
t→0

λ11(t) · f11 = a1x
3
1 + a2x

2
1x2 + a3x1x

2
2 + a4x

3
2 + a5x

2
1x3 + a6x1x2x3 + a7x

2
2x3

+ a8x1x
2
3 + a9x2x

2
3 + a10x

3
3 + a11x

2
1x4 + a12x1x2x4

+ a13x
2
2x4 + a14x1x3x4 + a15x2x3x4 + a16x

2
3x4

+ a17x1x
2
4 + a18x2x

2
4 + a19x3x

2
4 + a20x

3
4

+ a21x0x
2
5 + a22x0x5x6 + a23x0x

2
6.
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H and CG(H). LetH = λ11(Gm). TheH-weights on 〈x0, . . . , x6〉 are (2, 0, 0, 0, 0,−1,−1)
with multiplicities (1, 4, 2); hence,

CG(H) =
{
diag(α)⊕A⊕B : α ∈ Gm, A ∈ GL(4), B ∈ GL(2), α det(A) det(B) = 1

}
∼=

(
Gm ×GL(4)×GL(2)

)
∩ SL(7). (12)

Every monomial of ϕ11 has H-weight 0, so ϕ11 ∈ WH .

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ11 is equivalent to polystability for the CG(H)-
action on WH . After conjugating inside the GL(4)- and GL(2)-blocks, any
λ ∈ Y

(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (α, s1, s2, s3, s4, t+u, t−u), S := α+(s1+s2+s3+s4)+2t = 0

(Convention 4.6). Summing the λ-weights of the 20 cubic monomials in x1, . . . , x4

gives 15(s1 + s2 + s3 + s4), while

w(x0x
2
5) + w(x0x5x6) + w(x0x

2
6) = 3α+ 6t.

Hence, the positive linear identity∑
20 cubics in x1,...,x4

w + 5
[
w(x0x

2
5) + w(x0x5x6) + w(x0x

2
6)
]
= 15S. (13)

If λ ∈ Λϕ11
, then all weights on the left are ≥ 0 and S = 0; by (13) they all

vanish. From the cubic part, we obtain s1 = s2 = s3 = s4 = 0, and from the
x0-part, we get u = 0 and α+ 2t = 0. Thus, writing t = −k with k ∈ Z,

µk(t) := diag
(
t2k, 1, 1, 1, 1, t−k, t−k

)
, Λϕ11

= {µk | k ∈ Z} ∪ {0}.

Therefore Λϕ11 is symmetric, and by the Casimiro–Florentino criterion, ϕ11 is
polystable; in particular, SL(7) · ϕ11 is closed.

Normal form and component dimension. We work under the CG(H)-
action and normalize coefficients block by block on the H-fixed locus

WH = Sym3〈x1, x2, x3, x4〉︸ ︷︷ ︸
(I)

⊕ x0 ⊗ Sym2〈x5, x6〉︸ ︷︷ ︸
(II)

.

(II) The binary quadratic block x0 ⊗ Sym2〈x5, x6〉 Via the right action
of GL(〈x5, x6〉) (through the Sym2-representation), a nondegenerate quadratic
form can be diagonalized. Using the central torus and projective scaling, we
normalize the coefficients to 1, obtaining

x0x
2
5 + x0x

2
6.

After this step, the remaining right symmetry is the isometry group of the
diagonal form (orthogonal group).
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(I) The quaternary cubic block Sym3〈x1, x2, x3, x4〉 Consider the symmet-
ric 3-tensor of coefficients of a general quaternary cubic. Acting by GL(〈x1, x2, x3, x4〉)
and an overall projective scaling, we choose a convenient slice that retains three
pure cubes with unit coefficients, allow the fourth pure cube to retain a param-
eter, and reduces mixed terms to two representatives. Specifically, by suitable
linear changes of variables, followed by rescaling within the stabilizer of the
diagonal part, we arrive at

x3
1 + x3

2 + x3
3 + τ x3

4 + ρ x1x2x3 + σ x1x2x4, (τ, ρ, σ ∈ C×).

All other mixed monomials can be eliminated by the remaining GL(4)-freedom
preserving this slice, while τ, ρ, σ remain as genuine moduli.

Combining (I) and (II), we obtain the convenient normal form for Case k = 11:

φnf
11(τ, ρ, σ) = x3

1+x3
2+x3

3+τ x3
4+ρ x1x2x3+σ x1x2x4+x0x

2
5+x0x

2
6, (τ, ρ, σ) ∈ (C×)3.

As dimWH = 23 and dimCG(H) = 20, the effective action has dimension 19;
after projectivizing, we obtain 23−19−1 = 3. The residual T -stabilizer is finite;
hence, the corresponding component Φ11 of the moduli is three-dimensional.

4.12 Case k = 12

1-PS limit. Set

λ12(t) = diag
(
t3, t2, t, t, t−1, t−2, t−4

)
, t ∈ Gm.

For a generic f12 as in Section 3, the 1-PS limit is

ϕ12 := lim
t→0

λ12(t)·f12 = a1x1x
2
4+a2x

2
2x5+a3x2x3x5+a4x

2
3x5+a5x0x4x5+a6x

2
1x6+a7x0x2x6+a8x0x3x6.

H and CG(H). LetH = λ12(Gm). TheH-weights on 〈x0, . . . , x6〉 are (3, 2, 1, 1,−1,−2,−4)
with multiplicities (1, 1, 2, 1, 1, 1); hence,

CG(H) =
{
diag(α)⊕ diag(β)⊕A⊕ diag(γ, δ, ε) : α, β, γ, δ, ε ∈ Gm, A ∈ GL(2),

αβ det(A)γδε = 1
}

∼=
(
G5

m ×GL(2)
)
∩ SL(7), dimCG(H) = 8.

(14)

Every monomial of ϕ12 has H-weight 0.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ12 is equivalent to polystability for the CG(H)-
action on WH . After conjugating inside the GL(2)-block on 〈x2, x3〉, any λ ∈
Y (CG(H)) may be taken with

wt(x0, . . . , x6) = (α, β, s+u, s−u, γ, δ, ε), S := α+β+2s+γ+δ+ε = 0.
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A direct computation yields the positive identity

2w(x1x
2
4) + w(x2

2x5) + w(x2x3x5) + 2w(x2
3x5) + 2w(x0x4x5) + 2w(x2

1x6)

+ 3w(x0x2x6) + w(x0x3x6) = 6S. (15)

If λ ∈ Λϕ12
, then all the weights on the left are ≥ 0 and S = 0; by (15) they all

vanish. Solving gives

u = 0, β = −2γ, δ = −2s, ε = −2β = 4γ, α = −3γ, s = −γ.

Writing k = −γ ∈ Z, we obtain

µk(t) = diag
(
t3k, t2k, tk, tk, t−k, t−2k, t−4k

)
, Λϕ12 = {µk | k ∈ Z} ∪ {0}.

Thus Λϕ12
is symmetric, and by the Casimiro–Florentino criterion ϕ12 is polystable;

in particular, SL(7) · ϕ12 is closed.

Normal form and component dimension. Work on the H-fixed slice

WH = x1 ⊗ Sym2〈x4〉︸ ︷︷ ︸
(I)

⊕ Sym2〈x2, x3〉 ⊗ x5︸ ︷︷ ︸
(II)

⊕ x0 ⊗ 〈x4〉 ⊗ x5︸ ︷︷ ︸
(III)

⊕ Sym2〈x1〉 ⊗ x6︸ ︷︷ ︸
(IV)

⊕ x0 ⊗ 〈x2, x3〉 ⊗ x6︸ ︷︷ ︸
(V)

.

as above. Proceed as follows.

Diagonalize the ternary quadratic in the (II)-block. Using GL(〈x2, x3〉),
bring Sym2〈x2, x3〉 ⊗ x5 to x2

2x5 + x2
3x5; the cross term x2x3x5 is eliminated.

Align the (V)-block. Within x0⊗〈x2, x3〉⊗x6, use the same GL(2) to align
this block to x0x2x6 (so the x0x3x6 entry vanishes).

Normalize coefficients by torus scalings and projective scaling (I),(III),(V).
Use the 1-dimensional tori on the 1-dimensional weight spaces and the overall
projective scaling to set the remaining nonzero coefficients to 1.

This yields the closed orbit normal form

φnf
12 = x1x

2
4 + x2

2x5 + x2
3x5 + x0x4x5 + x2

1x6 + x0x2x6.

Finally, dimWH = 8 and dimCG(H) = 8; the effective action has dimension 7
(with H acting trivially). After projectivizing, we obtain 8 − 7− 1 = 0; hence,
the corresponding boundary component is zero-dimensional.

28



4.13 Case k = 13

1-PS limit. Set

λ13(t) = diag
(
t2, t, t, 1, t−1, t−1, t−2

)
, t ∈ Gm.

For a generic f13 as in Section 3, the 1-PS limit is

ϕ13 := lim
t→0

λ13(t) · f13 = a1x
3
3 + a2x1x3x4 + a3x2x3x4 + a4x0x

2
4 + a5x1x3x5 + a6x2x3x5

+ a7x0x4x5 + a8x0x
2
5 + a9x

2
1x6 + a10x1x2x6 + a11x

2
2x6 + a12x0x3x6.

This is H-fixed for H = λ13(Gm).

H and CG(H). The H-weights on 〈x0, . . . , x6〉 are (2, 1, 1, 0,−1,−1,−2) with
blocks 〈x0〉 ⊕ 〈x1, x2〉 ⊕ 〈x3〉 ⊕ 〈x4, x5〉 ⊕ 〈x6〉. Hence,

CG(H) =
{
diag(α) ⊕ A ⊕ diag(β) ⊕ B ⊕ diag(γ) : α, β, γ ∈ Gm, A,B ∈ GL(2),

α det(A)β det(B) γ = 1
}

∼=
(
Gm ×GL(2)×Gm ×GL(2)×Gm

)
∩ SL(7), dimCG(H) = 10.

(16)

Each monomial of ϕ13 has H-weight 0.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ13 is equivalent to polystability for the CG(H)-
action onWH . After conjugating within the two GL(2)-blocks, any λ ∈ Y (CG(H))
may be taken as

wt(x0, . . . , x6) = (α, s+u, s−u, β, t+v, t−v, γ), S := α+2s+β+2t+γ = 0 (Convention 4.6).

A direct computation yields the positive identity[
w(x2

1x6) + w(x2
2x6) + 2w(x1x2x6)

]
+
[
w(x0x

2
4) + 2w(x0x4x5) + w(x0x

2
5)
]

+
[
w(x1x3x4) + w(x2x3x4) + w(x1x3x5) + w(x2x3x5)

]
+ 2w(x0x3x6) = 6S.

(17)

If λ ∈ Λϕ13 , then the twelve weights on the left are ≥ 0 and S = 0; hence, they
all vanish. Solving gives

u = 0, v = 0, α+ 2t = 0, 2s+ γ = 0, s+ β + t = 0, α+ β + γ = 0.

Writing s = k ∈ Z yields

(α, s, β, t, γ) = (2k, k, 0, −k, −2k), µk(t) := diag
(
t2k, tk, tk, 1, t−k, t−k, t−2k

)
,

so Λϕ13 = {µk | k ∈ Z}∪{0} is symmetric; by the Casimiro–Florentino criterion
ϕ13 is polystable; hence, SL(7) · ϕ13 is closed.
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Normal form and component dimension. We display

WH = Sym3〈x3〉︸ ︷︷ ︸
(I)

⊕ x0 ⊗ Sym2〈x4, x5〉︸ ︷︷ ︸
(II)

⊕ 〈x1, x2〉 ⊗ 〈x4, x5〉 ⊗ 〈x3〉︸ ︷︷ ︸
(III)

⊕ Sym2〈x1, x2〉 ⊗ 〈x6〉︸ ︷︷ ︸
(IV)

⊕ x0 ⊗ 〈x3〉 ⊗ x6︸ ︷︷ ︸
(V)

.

Normalize block by block under the CG(H)-action:

(II) x0 ⊗ Sym2〈x4, x5〉: diagonalize the binary quadratic to x0x
2
4 + x0x

2
5.

(III) 〈x1, x2〉 ⊗ 〈x4, x5〉 ⊗ 〈x3〉: view the four x3-bilinear terms as a 2 × 2
matrix on 〈x1, x2〉 ⊗ 〈x4, x5〉 and bring it to diagonal form, x1x3x4 + ρ x2x3x5,
with ρ ∈ C×.

(IV) Sym2〈x1, x2〉 ⊗ 〈x6〉: diagonalize the symmetric 2 × 2 form to x2
1x6 +

σ x2
2x6, with σ ∈ C×.

(I)(V) Use the three torus factors on x0, x3, x6 together with projective scaling
to normalize the remaining nonzero coefficients to 1.
This yields the convenient normal form

φnf
13(ρ, σ) = x3

3+x0x
2
4+x0x

2
5+x1x3x4+ρ x2x3x5+x2

1x6+σ x2
2x6+x0x3x6, (ρ, σ) ∈ (C×)2.

Here, dim(WH) = 12 and dimCG(H) = 10; as H acts trivially, the effective
group dimension is 9. After projectivizing, we obtain 12 − 9 − 1 = 2. The
residual T -stabilizer is finite; hence, the corresponding component Φ13 of the
moduli is two-dimensional.

4.14 Case k = 14

1-PS limit. Set

λ14(t) = diag
(
t2, t2, 1, t−1, t−1, t−1, t−1

)
, t ∈ Gm.

For a generic f14 as in Section 3, the 1-PS limit is

ϕ14 := lim
t→0

λ14(t) · f14 = a1x
3
2 + a2x0x

2
3 + a3x1x

2
3 + a4x0x3x4 + a5x1x3x4 + a6x0x

2
4 + a7x1x

2
4

+ a8x0x3x5 + a9x1x3x5 + a10x0x4x5 + a11x1x4x5 + a12x0x
2
5 + a13x1x

2
5

+ a14x0x3x6 + a15x1x3x6 + a16x0x4x6 + a17x1x4x6

+ a18x0x5x6 + a19x1x5x6 + a20x0x
2
6 + a21x1x

2
6.
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H and CG(H). LetH = λ14(Gm). TheH-weights on 〈x0, . . . , x6〉 are (2, 2, 0,−1,−1,−1,−1)
with block multiplicities (2, 1, 4). Hence,

CG(H) =
{
A⊕ β ⊕B : A ∈ GL(2), β ∈ Gm, B ∈ GL(4), det(A)β det(B) = 1

}
∼=

(
GL(2)×Gm ×GL(4)

)
∩ SL(7), dimCG(H) = 20.

Every monomial of ϕ14 has H-weight 0; hence, ϕ14 ∈ WH .

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ14 is equivalent to polystability for the CG(H)-
action on WH . After conjugating inside the GL(2)- and GL(4)-blocks, any
λ ∈ Y

(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (a+ u, a− u, b, c+ v1, c+ v2, c+ v3, c+ v4),

where v1 + v2 + v3 + v4 = 0, and with the SL-constraint (Convention 4.6)

S := 2a+ b+ 4c = 0.

A direct computation yields the positive identity

6∑
j=3

(
w(x0x

2
j ) + w(x1x

2
j )
)
+ 3

∑
3≤i<j≤6

(
w(x0xixj) + w(x1xixj)

)
+ 10w(x3

2) = 30S.

(18)
If λ ∈ Λϕ14 , then all 21 weights are ≥ 0 and S = 0; hence, by (18) they all
vanish. Solving gives

b = 0, u = 0, v1 = v2 = v3 = v4 = 0, a+ 2c = 0.

Writing c = −k with k ∈ Z, we obtain

µk(t) = diag
(
t2k, t2k, 1, t−k, t−k, t−k, t−k

)
, Λϕ14

= {µk | k ∈ Z} ∪ {0}.

Thus Λϕ14 is symmetric, and by the Casimiro–Florentino criterion ϕ14 is polystable;
in particular SL(7) · ϕ14 is closed.

Normal form and component dimension. We display WH in block form:

WH = Sym3〈x2〉︸ ︷︷ ︸
(I)

⊕ 〈x0〉 ⊗ Sym2〈x3, x4, x5, x6〉︸ ︷︷ ︸
(II)

⊕ 〈x1〉 ⊗ Sym2〈x3, x4, x5, x6〉︸ ︷︷ ︸
(III)

.

Write the quadratic part in 〈x3, x4, x5, x6〉 as a pencil

x0 Q0(x3, x4, x5, x6) + x1 Q1(x3, x4, x5, x6).

Acting by GL(〈x3, x4, x5, x6〉) ∼= GL(4) we take Q0 to the identity. Using the
residual orthogonal group on the right and the GL(〈x0, x1〉)-action on the left,

31



together with central torus and projective scalings, the pencil is diagonalized to
a one parameter form. A convenient normal form is

φnf
14(τ) = x3

2 + x0

(
x2
3 + x2

4 + x2
5 + x2

6

)
+ x1

(
x2
3 + τ x2

4 + x2
5 + x2

6

)
, τ ∈ C×.

As dimWH = 21 and dimCG(H) = 20, the effective action has dimension 19;
after projectivizing we obtain 21−19−1 = 1. The residual T -stabilizer is finite;
hence, the corresponding component Φ14 of the moduli is one-dimensional.

4.15 Case k=15

1-PS limit. Set

λ15(t) = diag
(
t2, t, t, 1, 1, t−2, t−2

)
, t ∈ Gm.

For a generic f15 as in Section 3, the 1-PS limit is

ϕ15 := lim
t→0

λ15(t) · f15 = a1x
3
3 + a2x

2
3x4 + a3x3x

2
4 + a4x

3
4 + a5x

2
1x5 + a6x1x2x5 + a7x

2
2x5

+ a8x0x3x5 + a9x0x4x5 + a10x
2
1x6 + a11x1x2x6 + a12x

2
2x6

+ a13x0x3x6 + a14x0x4x6.

All monomials have H-weight 0, so ϕ15 ∈ WH for H = λ15(Gm).

H and CG(H). The H-weights on 〈x0, . . . , x6〉 are (2, 1, 1, 0, 0,−2,−2) with
block decomposition 〈x0〉 ⊕ 〈x1, x2〉 ⊕ 〈x3, x4〉 ⊕ 〈x5, x6〉. Hence,

CG(H) =
{
diag(α)⊕A⊕B ⊕ C : α ∈ Gm, A,B,C ∈ GL(2), α det(A) det(B) det(C) = 1

}
∼=

(
Gm ×GL(2)×GL(2)×GL(2)

)
∩ SL(7), dimCG(H) = 12.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ15 is equivalent to polystability for the CG(H)-
action on WH . After conjugating inside the three GL(2)-blocks, any λ ∈
Y
(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (α, s+u, s−u, t+v, t−v, γ+w, γ−w), S := α+2s+2t+2γ = 0

A direct computation yields the positive identity

2
[
w(x3

3) + w(x2
3x4) + w(x3x

2
4) + w(x3

4)
]
+ 3

[(
w(x2

1x5) + 2w(x1x2x5) + w(x2
2x5)

)
+

(
w(x2

1x6) + 2w(x1x2x6) + w(x2
2x6)

)]
+ 6

[
w(x0x3x5) + w(x0x4x5) + w(x0x3x6) + w(x0x4x6)

]
= 24S.

(19)

If λ ∈ Λϕ15
, then all 14 weights above are ≥ 0 and S = 0; hence, by (19) they

all vanish. Solving gives

u = 0, v = 0, w = 0, t = 0, α+ γ = 0, 2s+ γ = 0.
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Writing s = k ∈ Z we obtain

µk(t) := diag
(
t2k, tk, tk, 1, 1, t−2k, t−2k

)
, Λϕ15

= {µk | k ∈ Z} ∪ {0}.

Thus Λϕ15
is symmetric; by the Casimiro–Florentino criterion ϕ15 is polystable,

so SL(7) · ϕ15 is closed.

Normal form and component dimension. We have

WH = Sym3〈x3, x4〉︸ ︷︷ ︸
(I)

⊕
(
Sym2〈x1, x2〉

)
⊗ 〈x5, x6〉︸ ︷︷ ︸

(II)

⊕ x0 ⊗ 〈x3, x4〉 ⊗ 〈x5, x6〉︸ ︷︷ ︸
(III)

,

of respective dimensions 4, 6, and 4 (total dimWH = 14).

Reduction to normal form. We now normalize φ15 under the action of
CG(H) onWH , using only: (i) the left GL(2) on 〈x3, x4〉, (ii) the left Sym2GL(2)
on Sym2〈x1, x2〉, (iii) the right GL(2) on 〈x5, x6〉, (iv) diagonal tori (subject to
det = 1) and projective rescaling. We proceed block by block.

(I) The binary cubic block Sym3〈x3, x4〉. A general binary cubic is GL(2)-
equivalent (after one overall scalar) to

x2
3x4 + τ x3x

2
4, τ ∈ C×,

which fixes the Sym3-part up to the single modulus τ .

(III) The bilinear 2 × 2 block x0 ⊗ 〈x3, x4〉 ⊗ 〈x5, x6〉. Write this part as
x0 (x3, x4)M (x5, x6)

⊤ with M ∈ M2×2. Using the left GL(2) action on 〈x3, x4〉
and the right GL(2) action on 〈x5, x6〉 (an SVD-type reduction), we bring M
to the identity; a diagonal torus and projective rescaling normalize the two
coefficients to 1:

x0x3x5 + x0x4x6.

(II) The 3×2 block
(
Sym2〈x1, x2〉

)
⊗〈x5, x6〉. Choose bases {x2

1, x1x2, x
2
2}

and {x5, x6}. The left action of Sym2GL(2) on Sym2〈x1, x2〉 together with the
right action of GL(2) on 〈x5, x6〉 allows a simultaneous reduction that eliminates
the mixed x1x2 row and diagonalizes the remaining two rows. After using
diagonal tori and an overall scale, we obtain

x2
1x5 + ρ x2

2x6, ρ ∈ C×.
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Normal form. Hence, a closed-orbit representative is

φnf
15(τ, ρ) = x2

3x4 + τ x3x
2
4 + x0x3x5 + x0x4x6 + x2

1x5 + ρ x2
2x6, (τ, ρ) ∈ (C×)2.

(20)
For general (τ, ρ) the residual stabilizer in CG(H) is finite, so the parameters
(τ, ρ) record genuine moduli on the closed stratum.

Component dimension. By Convention 4.6, the component dimension is

dim
(
component

)
= dimWH − dimeff

(
CG(H)

)
− 1.

Here dimWH = 14 and dimCG(H) = 12. As H ' Gm ⊂ CG(H) acts trivially
on WH by construction, the effective group acting on WH is CG(H)/H, of
dimension 11. Therefore the corresponding component Φ15 of the moduli is
two-dimensional.

4.16 Case k=16

1-PS limit. Set

λ16(t) = diag
(
t2, t, 1, 1, 1, t−1, t−2

)
, t ∈ Gm.

For a generic f16 as in Section 3, the 1-PS limit is

ϕ16 := lim
t→0

λ16(t) · f16 = a1x
3
2 + a2x

2
2x3 + a3x2x

2
3 + a4x

3
3 + a5x

2
2x4 + a6x2x3x4 + a7x

2
3x4

+ a8x2x
2
4 + a9x3x

2
4 + a10x

3
4 + a11x1x2x5 + a12x1x3x5 + a13x1x4x5

+ a14x0x
2
5 + a15x

2
1x6 + a16x0x2x6 + a17x0x3x6 + a18x0x4x6.

(All monomials have H-weight 0, so ϕ16 ∈ WH for H = λ16(Gm).)

H and CG(H). The H-weights on 〈x0, . . . , x6〉 are (2, 1, 0, 0, 0,−1,−2) with
block decomposition 〈x0〉 ⊕ 〈x1〉 ⊕ 〈x2, x3, x4〉 ⊕ 〈x5〉 ⊕ 〈x6〉. Hence,

CG(H) =
{
diag(α)⊕ diag(β)⊕B ⊕ diag(δ)⊕ diag(ε) : α, β, δ, ε ∈ Gm, B ∈ GL(3),

α β det(B) δ ε = 1
}

∼=
(
Gm ×Gm ×GL(3)×Gm ×Gm

)
∩ SL(7), dimCG(H) = 12.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ16 is equivalent to polystability for the CG(H)-
action on WH . After conjugating within the GL(3)-block on 〈x2, x3, x4〉, any
λ ∈ Y

(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (α, β, c+ v1, c+ v2, c+ v3, δ, ε), v1 + v2 + v3 = 0,
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and, by Convention 4.6, with the SL-constraint

S := α+ β + 3c+ δ + ε = 0.

Writing w(·) for the λ-weight of a monomial, a direct calculation yields the
positive identity∑

10 cubics in x2,x3,x4

w + 6w(x0x
2
5) + 6w(x2

1x6)

+ 2w(x0x2x6) + w(x0x3x6) + w(x0x4x6) = 12S.

(21)

If λ ∈ Λϕ16 , then all 18 weights on the left are ≥ 0 and S = 0; hence, by (21)
they all vanish. From the ten cubics, we obtain

c = 0, v1 = v2 = v3 = 0,

and from the remaining terms

α+ 2δ = 0, 2β + ε = 0, α+ ε = 0.

Thus α = 2β, δ = −β, ε = −2β. Writing β = k ∈ Z gives

µk(t) = diag
(
t2k, tk, 1, 1, 1, t−k, t−2k

)
, Λϕ16 = {µk | k ∈ Z} ∪ {0}.

As Λϕ16 is symmetric, ϕ16 is polystable by the Casimiro–Florentino criterion; in
particular, SL(7) · ϕ16 is closed.

Normal form and component dimension. On the H-fixed slice we have
the block decomposition

WH = Sym3〈x2, x3, x4〉︸ ︷︷ ︸
(I)

⊕ x1 ⊗ 〈x2, x3, x4〉 ⊗ x5︸ ︷︷ ︸
(II)

⊕ 〈x0x
2
5〉︸ ︷︷ ︸

(III)

⊕ 〈x2
1x6〉︸ ︷︷ ︸
(IV)

⊕ x0 ⊗ 〈x2, x3, x4〉 ⊗ x6︸ ︷︷ ︸
(V)

.

The centralizer acts by GL(〈x2, x3, x4〉) on the three-space 〈x2, x3, x4〉 and by in-
dependent diagonal tori on x0, x1, x5, x6 (subject to the determinant constraint).
We normalize block-wise as follows.

(II)(V) The x1- and x0-bilinear 3-vectors. The (II)-block is a 3-vector
of coefficients of {x1x2x5, x1x3x5, x1x4x5} and the (V)-block is a 3-vector for
{x0x2x6, x0x3x6, x0x4x6}. For a generic element, these two vectors are linearly
independent in 〈x2, x3, x4〉∨; hence, a single change of basis in GL(〈x2, x3, x4〉)
sends them to the coordinate vectors e2 and e3. Using the x1, x5- and x0, x6-tori
(together with overall scaling), we normalize the surviving entries to 1:

(II) ∼ x1x2x5, (V) ∼ x0x3x6.
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(III)(IV) The one-dimensional blocks. By the x0- and x1-tori we also
normalize

(III) ∼ x0x
2
5, (IV) ∼ x2

1x6.

(I) The ternary cubic on 〈x2, x3, x4〉. After fixing the basis in (a), the
residual GL(〈x2, x3, x4〉) action and the diagonal tori allow us to reduce a gen-
eral ternary cubic in (I) to a convenient 6-parameter slice that preserves the
three pure cubes, the mixed term x2x3x4, and three nearest-neighbour terms.
Altogether we arrive at the closed-orbit representative

φnf
16 = x3

2+σ1x
3
3+σ2x

3
4+ρ x2x3x4+x1x2x5+x0x3x6+x0x

2
5+x2

1x6+κx2
2x3+µx2

3x4+λx2
2x4,

(22)
with (σ1, σ2, ρ, κ, µ, λ) ∈ (C×)6 recording genuine moduli for a general member.
This normal form matches the one summarized for k = 16 in Table 2.

The H-fixed slice has

dimWH = 10︸︷︷︸
(I)

+ 3︸︷︷︸
(II)

+ 1︸︷︷︸
(III)

+ 1︸︷︷︸
(IV)

+ 3︸︷︷︸
(V)

= 18.

The centralizer has dimension 12, and its H ' Gm-factor acts trivially on WH ;
Hence, the effective dimension of the action is 12−1 = 11. After projectivizing,
the component dimension is therefore

18− 11− 1 = 6,

in agreement with the six parameters in (22). Thus, the corresponding compo-
nent Φ16 of the moduli is six-dimensional.

4.17 Case k=17

1-PS limit. Set

λ17(t) = diag
(
t, t, t, 1, 1, t−1, t−2

)
, t ∈ Gm.

For a generic f17 as in Section 3, the 1-PS limit is

ϕ17 := lim
t→0

λ17(t) · f17 = a1 x
3
3 + a2 x

2
3x4 + a3 x3x

2
4 + a4 x

3
4

+ a5 x0x3x5 + a6 x1x3x5 + a7 x2x3x5

+ a8 x0x4x5 + a9 x1x4x5 + a10 x2x4x5

+ a11 x
2
0x6 + a12 x0x1x6 + a13 x

2
1x6

+ a14 x0x2x6 + a15 x1x2x6 + a16 x
2
2x6.
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H and CG(H). LetH = λ17(Gm). TheH-weights on 〈x0, . . . , x6〉 are (1, 1, 1, 0, 0,−1,−2)
with block multiplicities 〈x0, x1, x2〉, 〈x3, x4〉, 〈x5〉, 〈x6〉. Thus

CG(H) =
{
A⊕B ⊕ diag(γ)⊕ diag(δ) : A ∈ GL(3), B ∈ GL(2), γ, δ ∈ Gm,

det(A) det(B)γδ = 1
}

∼=
(
GL(3)×GL(2)×Gm ×Gm

)
∩ SL(7).

Each monomial of ϕ17 has H-weight 0. Moreover, dimCG(H) = 14.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ17 is equivalent to polystability for the CG(H)-
action on the H-fixed subspace. After conjugating inside the GL(3)- and GL(2)-
blocks, any λ ∈ Y

(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (a+ u1, a+ u2, a+ u3, b+ v, b− v, c, d), u1 + u2 + u3 = 0,

and the SL(7)-condition (Convention 4.6)

S := 3a+ 2b+ c+ d = 0.

A direct calculation yields the positive linear identity[
w(x3

3) + w(x2
3x4) + w(x3x

2
4) + w(x3

4)
]

+ 2
[
w(x0x3x5) + w(x1x3x5) + w(x2x3x5) + w(x0x4x5) + w(x1x4x5) + w(x2x4x5)

]
+ 2

[
w(x2

0x6) + w(x0x1x6) + w(x2
1x6) + w(x0x2x6) + w(x1x2x6) + w(x2

2x6)
]

= 12S. (23)

If λ ∈ Λϕ17
, then all 16 monomial weights are ≥ 0 and S = 0; by (23) they must

all vanish. Solving gives

b = 0, v = 0, u1 = u2 = u3 = 0, c = −a, d = −2a.

Writing a = k (k ∈ Z) yields

Λϕ17 = {µk | k ∈ Z} ∪ {0}, µk(t) = diag
(
tk, tk, tk, 1, 1, t−k, t−2k

)
.

Thus, Λϕ17
is symmetric, and by the Casimiro–Florentino criterion, ϕ17 is

polystable; in particular, SL(7) · ϕ17 is closed.

Normal form and component dimension. On the H-fixed slice

WH = Sym3〈x3, x4〉︸ ︷︷ ︸
(I)

⊕ 〈x0, x1, x2〉 ⊗ 〈x3, x4〉 ⊗ x5︸ ︷︷ ︸
(II)

⊕ Sym2〈x0, x1, x2〉 ⊗ x6︸ ︷︷ ︸
(III)

,

of total dimension 4 + 6 + 6 = 16.
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(III) The quadratic block Sym2〈x0, x1, x2〉 ⊗ x6. By the GL3-action, one
diagonalizes the ternary quadratic, and using diagonal tori together with pro-
jective rescaling, the coefficients of x2

0x6 and x2
1x6 are normalized to 1, leaving

x2
0x6 + x2

1x6 + ρ x2
2x6, ρ ∈ C×.

Importantly, after the reduction of (II) below, the subgroup of GL3 that pre-
serves (II) is block-diagonal on 〈x0, x1〉⊕〈x2〉 (up to an O(2) on 〈x0, x1〉 and an
independent scaling on x2). Hence, the relative scale of x2 cannot be absorbed,
and the parameter ρ cannot be removed.

(II) The 3× 2 block 〈x0, x1, x2〉⊗ 〈x3, x4〉⊗x5. Using the left GL3 and right
GL2 actions (an SVD-type reduction), a generic rank-2 element is brought to
diagonal form; scaling x5 then fixes the two nonzero entries to 1:

x0x3x5 + x1x4x5.

(I) The binary cubic Sym3〈x3, x4〉. Acting by GL2 on 〈x3, x4〉 puts a general
binary cubic into a two-term form (sending three roots to {0,∞,−τ}), and a
residual diagonal scaling fixes the first coefficient to 1:

x2
3x4 + τ x3x

2
4, τ ∈ C×.

Collecting (I)-(III), we obtain the closed-orbit representative

ϕnf
17(τ, ρ) = x2

3x4+τ x3x
2
4+x0x3x5+x1x4x5+x2

0x6+x2
1x6+ρ x2

2x6, (τ, ρ) ∈ (C×)2.

Lastly, dimWH = 16 and dimCG(H) = 14. As theH ' Gm-factor acts triv-
ially on WH , the effective group dimension is 14− 1 = 13. After projectivizing,
we get

dim(component) = dimWH − 13− 1 = 2,

so (τ, ρ) are the two genuine moduli of the closed stratum. Hence, the corre-
sponding component Φ17 of the moduli is two-dimensional.

4.18 Case k=18

1-PS limit. Set

λ18(t) = diag
(
t, t, 1, 1, 1, t−1, t−1

)
, t ∈ Gm.

For a generic f18 as in Section 3, the 1-PS limit is

ϕ18 := lim
t→0

λ18(t) · f18 = a1 x
3
2 + a2 x

2
2x3 + a3 x2x

2
3 + a4 x

3
3 + a5 x

2
2x4 + a6 x2x3x4 + a7 x

2
3x4

+ a8 x2x
2
4 + a9 x3x

2
4 + a10 x

3
4 + a11 x0x2x5 + a12 x1x2x5 + a13 x0x3x5

+ a14 x1x3x5 + a15 x0x4x5 + a16 x1x4x5 + a17 x0x2x6 + a18 x1x2x6

+ a19 x0x3x6 + a20 x1x3x6 + a21 x0x4x6 + a22 x1x4x6.
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H and CG(H). LetH = λ18(Gm). TheH-weights on 〈x0, . . . , x6〉 are (1, 1, 0, 0, 0,−1,−1)
with block decomposition 〈x0, x1〉 ⊕ 〈x2, x3, x4〉 ⊕ 〈x5, x6〉. Hence,

CG(H) =
{
A⊕B ⊕ C : A ∈ GL(2), B ∈ GL(3), C ∈ GL(2),

det(A) det(B) det(C) = 1
}

∼=
(
GL(2)×GL(3)×GL(2)

)
∩ SL(7),

so dimCG(H) = 16. Each monomial of ϕ18 has H-weight 0; hence, ϕ18 is
H-fixed.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ18 is equivalent to polystability for the CG(H)-
action on the H-fixed subspace. After conjugating within the three blocks, any
λ ∈ Y

(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (a+ u, a− u, b+ v1, b+ v2, b+ v3, c+ w, c− w),

where a, b, c, u, w, vi ∈ Z, v1 + v2 + v3 = 0, and the SL-constraint is

S := 2a+ 3b+ 2c = 0

(Convention 4.6). Let w(·) denote the λ-weight of a monomial. Then∑
all 10 cubics in x2, x3, x4

w = 30 b,

and

4∑
i=2

[
w(x0xix5)+w(x1xix5)

]
= 6(a+b+c+w),

4∑
i=2

[
w(x0xix6)+w(x1xix6)

]
= 6(a+b+c−w).

Hence, we have the positive linear identity[ ∑
all 10 cubics in x2, x3, x4

w
]
+ 5

4∑
i=2

[
w(x0xix5) + w(x1xix5)

]
+ 5

4∑
i=2

[
w(x0xix6) + w(x1xix6)

]
= 30S. (24)

If λ ∈ Λϕ18
, then all 22 monomial weights are ≥ 0 and S = 0; by (24) they must

all vanish. Solving yields

b = 0, v1 = v2 = v3 = 0, u = 0, w = 0, a+ c = 0.

Writing a = k (k ∈ Z) gives

Λϕ18 = {µk | k ∈ Z} ∪ {0}, µk(t) = diag
(
tk, tk, 1, 1, 1, t−k, t−k

)
.

Thus Λϕ18
is symmetric, and by the Casimiro–Florentino criterion, ϕ18 is polystable;

in particular SL(7) · ϕ18 is closed.
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Normal form and component dimension. On the H-fixed slice

WH = Sym3〈x2, x3, x4〉︸ ︷︷ ︸
(I)

⊕ 〈x0, x1〉 ⊗ 〈x2, x3, x4〉 ⊗ x5︸ ︷︷ ︸
(II)

⊕ 〈x0, x1〉 ⊗ 〈x2, x3, x4〉 ⊗ x6︸ ︷︷ ︸
(III)

,

of total dimension 22, the centralizer acts blockwise. We normalize a general
element as follows.

(I) The ternary cubic Sym3〈x2, x3, x4〉. Acting by GL3 on 〈x2, x3, x4〉 and
using diagonal tori together with projective rescaling, we preserve three pure
cubes and a single mixed term:

x3
2 + σ1 x

3
3 + σ2 x

3
4 + ρ x2x3x4, (σ1, σ2, ρ) ∈ (C×)3.

(II)(III) The two 2× 3 blocks 〈x0, x1〉 ⊗ 〈x2, x3, x4〉 ⊗ x5,6. Using GL(2) on
〈x0, x1〉, GL(3) on 〈x2, x3, x4〉, and GL(2) on 〈x5, x6〉 (an SVD-type simultane-
ous reduction for the pair of blocks), we arrange a sparse diagonal shape and
then use diagonal tori/projective rescaling to fix three entries to 1, leaving three
genuine ratios. Concretely, we obtain

x0x2x5 + x1x3x5 + αx0x4x5 + x0x2x6 + β x1x3x6 + γ x1x4x6, (α, β, γ) ∈ (C×)3.

Collecting (I)-(III), a closed-orbit representative is

ϕnf
18(σ1, σ2, ρ, α, β, γ) = x3

2 + σ1x
3
3 + σ2x

3
4 + ρ x2x3x4 + x0x2x5

+x1x3x5 + αx0x4x5 + x0x2x6 + β x1x3x6 + γ x1x4x6,

with (σ1, σ2, ρ, α, β, γ) ∈ (C×)6.

Lastly, dimWH = 22 and dimCG(H) = 16. As the factor H ' Gm acts triv-
ially on WH , the effective group dimension is 16 − 1 = 15. After projectivizing
we obtain

dim(component) = dimWH − 15− 1 = 6,

Hence, the corresponding component Φ18 of the moduli is six-dimensional.

4.19 Case k=19

1-PS limit. Set

λ19(t) = diag
(
t2, t2, t2, 1, t−1, t−1, t−4

)
, t ∈ Gm.

For a generic f19 as in Section 3, the 1-PS limit is

ϕ19 := lim
t→0

λ19(t) · f19 = a1 x
3
3 + a2 x0x

2
4 + a3 x1x

2
4 + a4 x2x

2
4

+ a5 x0x4x5 + a6 x1x4x5 + a7 x2x4x5

+ a8 x0x
2
5 + a9 x1x

2
5 + a10 x2x

2
5

+ a11 x
2
0x6 + a12 x0x1x6 + a13 x

2
1x6

+ a14 x0x2x6 + a15 x1x2x6 + a16 x
2
2x6.
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H and CG(H). LetH = λ19(Gm). TheH-weights on 〈x0, . . . , x6〉 are (2, 2, 2, 0,−1,−1,−4)
with block decomposition

〈x0, x1, x2〉 ⊕ 〈x3〉 ⊕ 〈x4, x5〉 ⊕ 〈x6〉.

Hence,

CG(H) =
{
A⊕ diag(β)⊕B ⊕ diag(δ) : A ∈ GL(3), B ∈ GL(2),

β, δ ∈ Gm, det(A)β det(B) δ = 1
}

∼=
(
GL(3)×GL(2)×Gm ×Gm

)
∩ SL(7),

so dimCG(H) = 14. Each monomial of ϕ19 has H-weight 0.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ19 is equivalent to polystability for the CG(H)-
action on the H-fixed subspace. After conjugating inside the blocks, any λ ∈
Y
(
CG(H)

)
may be taken with

wt(x0, . . . , x6) = (s+ u1, s+ u2, s+ u3, b, t+ v, t− v, c),

where s, t, b, c, ui, v ∈ Z, u1 + u2 + u3 = 0, and the SL(7)-condition (Conven-
tion 4.6) is

S := 3s+ b+ 2t+ c = 0.

A direct computation yields the positive identity

2∑
i=0

[
w
(
xix

2
4

)
+ 2w

(
xix4x5

)
+ w

(
xix

2
5

)]
+ 2

[
w(x2

0x6) + w(x0x1x6) + w(x2
1x6) + w(x0x2x6) + w(x1x2x6) + w(x2

2x6)
]

+ 4w(x3
3) = 12S. (25)

If λ ∈ Λϕ19 , then all 16 monomial weights are ≥ 0 and S = 0; by (25) they must
all vanish. Solving gives

b = 0, v = 0, s+ ur + 2t = 0 (r = 1, 2, 3), 2s+ c = 0.

Using u1 + u2 + u3 = 0 we obtain s + 2t = 0 and u1 = u2 = u3 = 0. Writing
s = 2k with k ∈ Z yields

Λϕ19
= {µk | k ∈ Z} ∪ {0}, µk(t) = diag

(
t2k, t2k, t2k, 1, t−k, t−k, t−4k

)
.

Thus Λϕ19
is symmetric, and by the Casimiro–Florentino criterion ϕ19 is polystable;

in particular SL(7) · ϕ19 is closed.
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Normal form and component dimension. In the H-fixed subspace

WH = 〈x3
3〉 ⊕ 〈x0, x1, x2〉 ⊗ Sym2〈x4, x5〉 ⊕ Sym2〈x0, x1, x2〉 ⊗ x6,

using GL(2) on 〈x4, x5〉 (via Sym2), GL(3) on 〈x0, x1, x2〉, and torus scalings, a
generic element is brought to

ϕnf
19(ρ, σ) = x3

3 + x0x
2
4 + x1x4x5 + x2x

2
5 + x2

0x6 + x2
1x6 + ρ x2

2x6 + σ x0x1x6,

with (ρ, σ) ∈ C×2
general. As dimWH = 16 and dimCG(H) = 14 (with H

acting trivially), the effective action has dimension 13; after projectivizing we
obtain

16− 13− 1 = 2.

The residual T -stabilizer is finite; hence, the corresponding component Φ19 of
the moduli is two-dimensional.

4.20 Case k=20

1-PS limit. Set

λ20(t) = diag
(
t, t, t, t, 1, t−2, t−2

)
, t ∈ Gm.

For a generic f20 as in Section 3, the 1-PS limit is

ϕ20 := lim
t→0

λ20(t) · f20 = a1 x
3
4 + a2 x

2
0x5 + a3 x0x1x5 + a4 x

2
1x5 + a5 x0x2x5 + a6 x1x2x5

+ a7 x
2
2x5 + a8 x0x3x5 + a9 x1x3x5 + a10 x2x3x5 + a11 x

2
3x5

+ a12 x
2
0x6 + a13 x0x1x6 + a14 x

2
1x6 + a15 x0x2x6 + a16 x1x2x6

+ a17 x
2
2x6 + a18 x0x3x6 + a19 x1x3x6 + a20 x2x3x6 + a21 x

2
3x6.

H and CG(H). LetH = λ20(Gm). TheH-weights on 〈x0, . . . , x6〉 are (1, 1, 1, 1, 0,−2,−2)
with block multiplicities 〈x0, x1, x2, x3〉, 〈x4〉, 〈x5, x6〉. Hence,

CG(H) =
{
A⊕ diag(β)⊕ C : A ∈ GL(4), β ∈ Gm, C ∈ GL(2),

det(A)β det(C) = 1
}

∼=
(
GL(4)×Gm ×GL(2)

)
∩ SL(7),

so dimCG(H) = 20. Every monomial of ϕ20 has H-weight 0.

Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ20 is equivalent to polystability for the CG(H)-
action on the H-fixed subspace. After conjugating inside the GL(4)- and GL(2)-
blocks, any λ ∈ Y (CG(H)) may be taken with weights

wt(x0, . . . , x6) =
(
a+ u0, a+ u1, a+ u2, a+ u3, b, c+ w, c− w

)
,
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where a, b, c, ui, w ∈ Z, u0 + u1 + u2 + u3 = 0, and, by Convention 4.6,

S := 4a+ b+ 2c = 0.

Let w(·) denote the λ-weight of a monomial. Then

w(x3
4) = 3b,

w(x2
ix5) = 2(a+ ui) + c+ w, w(x2

ix6) = 2(a+ ui) + c− w (i = 0, 1, 2, 3),

w(xixjx5) = 2a+ (ui + uj) + c+ w, w(xixjx6) = 2a+ (ui + uj) + c− w (0 ≤ i < j ≤ 3).

A direct computation yields the positive identity

3

3∑
i=0

[
w(x2

ix5) + w(x2
ix6)

]
+ 3

∑
0≤i<j≤3

[
w(xixjx5) + w(xixjx6)

]
+ 10w(x3

4) = 30S. (26)

If λ ∈ Λϕ20 , then all 21 monomial weights are ≥ 0 and S = 0; by (26) they must
all vanish. Solving gives

b = 0, w = 0, 2(a+ui)+c = 0 (i = 0, 1, 2, 3), 2a+(ui+uj)+c = 0 (i < j),

Hence, u0 = u1 = u2 = u3 = 0 and 2a+ c = 0. Writing a = k ∈ Z yields

Λϕ20 = {µk | k ∈ Z} ∪ {0}, µk(t) = diag
(
tk, tk, tk, tk, 1, t−2k, t−2k

)
.

As Λϕ20 is symmetric, ϕ20 is polystable by the Casimiro–Florentino criterion; in
particular, SL(7) · ϕ20 is closed.

Normal form and component dimension. We have

WH = 〈x 3
4 〉︸︷︷︸

(I)

⊕ Sym2〈x0, x1, x2, x3〉 ⊗ 〈x5〉︸ ︷︷ ︸
(II)

⊕ Sym2〈x0, x1, x2, x3〉 ⊗ 〈x6〉︸ ︷︷ ︸
(III)

,

so that dimWH = 21. The centralizer is

CG(H) =
{
A⊕β⊕C

∣∣ A ∈ GL(4), β ∈ Gm, C ∈ GL(2), det(A)·β·det(C) = 1
}

' (GL(4)×Gm ×GL(2)) ∩ SL(7),

of dimension 20.
A general element of WH has the shape

ϕ = a x 3
4 + x5Q5(x0, . . . , x3) + x6Q6(x0, . . . , x3), Q5, Q6 ∈ Sym2〈x0, . . . , x3〉.

(II) Using GL(4), we diagonalize Q5 into the identity quadratic form:

Q5 ∼ x2
0 + x2

1 + x2
2 + x2

3.

This leaves an O(4) stabilizer.

43



(III) With O(4) on 〈x0, . . . , x3〉 and GL(2) on 〈x5, x6〉, the pencil x5Q5+x6Q6

can be simultaneously diagonalized to

x5(x
2
0 + x2

1 + x2
2 + x2

3) + x6(x
2
0 + τx2

1 + x2
2 + x2

3), τ ∈ C×.

(I) Using the central Gm, we normalize a = 1.
Thus, the closed orbit representative is

ϕnf
20(τ) = x 3

4 + (x2
0 + x2

1 + x2
2 + x2

3)x5 + (x2
0 + τx2

1 + x2
2 + x2

3)x6, τ ∈ C×.

Component dimension. By Convention 4.6(5), the dimension of the com-
ponent is

dim(component) = dimWH − dimeff CG(H)− 1.

Here dimWH = 21. As CG(H) has dimension 20 but contains a one-dimensional
central torus acting trivially on WH , the effective action has dimension 19.
Hence,

dim(component) = 21− 19− 1 = 1,

which coincides with the free parameter τ . Hence, the corresponding component
Φ20 of the moduli is one-dimensional.

4.21 Case k=21

1-PS limit. Set

λ21(t) = diag
(
t, t, 1, 1, 1, 1, t−2

)
, t ∈ Gm.

For a generic f21 as in Section 3, the 1-PS limit is

ϕ21 := lim
t→0

λ21(t) · f21 = a1 x
3
2 + a2 x

2
2x3 + a3 x2x

2
3 + a4 x

3
3 + a5 x

2
2x4 + a6 x2x3x4 + a7 x

2
3x4

+ a8 x2x
2
4 + a9 x3x

2
4 + a10 x

3
4 + a11 x

2
2x5 + a12 x2x3x5 + a13 x

2
3x5

+ a14 x2x4x5 + a15 x3x4x5 + a16 x
2
4x5 + a17 x2x

2
5 + a18 x3x

2
5

+ a19 x4x
2
5 + a20 x

3
5 + a21 x

2
0x6 + a22 x0x1x6 + a23 x

2
1x6.

H and CG(H). LetH = λ21(Gm). TheH-weights on 〈x0, . . . , x6〉 are (1, 1, 0, 0, 0, 0,−2)
with block multiplicities 〈x0, x1〉, 〈x2, x3, x4, x5〉, 〈x6〉. Thus

CG(H) =
{
A⊕B ⊕ diag(γ) : A ∈ GL(2), B ∈ GL(4), γ ∈ Gm,

det(A) det(B)γ = 1
}

∼=
(
GL(2)×GL(4)×Gm

)
∩ SL(7),

so dimCG(H) = 20. Every monomial of ϕ21 has H-weight 0.

44



Polystability (Luna + Casimiro–Florentino). By Luna’s reduction, the
closedness of the SL(7)-orbit of ϕ21 is equivalent to polystability for the CG(H)-
action on the H-fixed subspace. After conjugating inside the GL(2)- and GL(4)-
blocks, any λ ∈ Y (CG(H)) may be taken with weights

wt(x0, . . . , x6) = (a+ u, a− u, b+ v1, b+ v2, b+ v3, b+ v4, c),

where a, b, c, u, vi ∈ Z, v1 + v2 + v3 + v4 = 0, and the SL(7)-constraint

S := 2a+ 4b+ c = 0.

Let w(·) denote the λ-weight of a monomial. Summing the weights of the twenty
cubic monomials in x2, x3, x4, x5 gives∑

all 20 cubics in x2, · · · , x5

w = 60 b,

while for the three x6-terms, we have

w(x2
0x6) = 2(a+ u) + c, w(x0x1x6) = 2a+ c, w(x2

1x6) = 2(a− u) + c.

Hence, the positive linear identity[ ∑
all 20 cubics

w
]
+ 5

[
w(x2

0x6) + w(x0x1x6) + w(x2
1x6)

]
= 15 (2a+ 4b+ c) = 15S.

(27)

If λ ∈ Λϕ21
, then all 23 monomial weights are ≥ 0 and S = 0; by (27), they

must all vanish. From the cubic part, we get b = 0, and the nonnegativity of
w(x3

i ) = 3(b + vi) = 3vi together with
∑

vi = 0 gives vi = 0 for i = 1, . . . , 4.
From the x6-part we obtain c = −2a and u = 0. Writing a = k (k ∈ Z) yields

Λϕ21 = {µk | k ∈ Z} ∪ {0}, µk(t) = diag
(
tk, tk, 1, 1, 1, 1, t−2k

)
.

Thus Λϕ21 is symmetric, and by the Casimiro–Florentino criterion, ϕ21 is polystable;
in particular, SL(7) · ϕ21 is closed.

Normal form and component dimension. In the H-fixed subspace

WH = Sym3〈x2, x3, x4, x5〉 ⊕ Sym2〈x0, x1〉 ⊗ x6,

acting by GL(4) on 〈x2, x3, x4, x5〉 and by GL(2) on 〈x0, x1〉 (together with the
central torus and projective scalings), a generic element is taken to

ϕnf
21(σ, τ, ρ) = x3

2+σ x3
3+ τ x3

4+x3
5+x2x3x4+x2

0x6+ρ x2
1x6, (σ, τ, ρ) ∈ (C×)3.

As dimWH = 23 and dimCG(H) = 20 (with H acting trivially), the effective
action has dimension 19; after projectivizing, we obtain

23− 19− 1 = 3,

so the corresponding closed component is three-dimensional. The residual T -
stabilizer is finite; hence, the corresponding component Φ21 of the moduli is
three-dimensional.
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Remark 4.8 (Normal form for Case k = 21). Let F (x2, x3, x4, x5) ∈ Sym3〈x2, x3, x4, x5〉
denote the cubic part on 〈x2, x3, x4, x5〉. As CG(H) acts on this 4-space through
GL(4), we may change coordinates within 〈x2, x3, x4, x5〉 freely. We explain a
constructive reduction to

F ∼ x3
2 + σ x3

3 + τ x3
4 + x3

5 + x2x3x4 (σ, τ ∈ C×),

which is the part of the normal form appearing in Case k = 21.

Step 1: isolate x3
5. Write

F = G3(x2, x3, x4) + x5 Q2(x2, x3, x4) + x2
5 L1(x2, x3, x4) + d x3

5,

with G3 ∈ Sym3〈x2, x3, x4〉, Q2 ∈ Sym2〈x2, x3, x4〉, L1 ∈ 〈x2, x3, x4〉, d ∈ C.
After a linear change, we may assume d 6= 0 (this is an open condition). Replace
x5 by x5− 1

3dL1(x2, x3, x4); a direct expansion shows the x2
5-term disappears, so

F = G3(x2, x3, x4) + x5 Q̃2(x2, x3, x4) + d x3
5.

Step 2: Hesse form on the plane x5 = 0. Using GL(3) on 〈x2, x3, x4〉, we may
assume that the ternary cubic is in Hesse form

G3 ∼ x3
2 + x3

3 + x3
4 + λx2x3x4 (λ ∈ C),

which holds for a Zariski-open set of cubics [Huy23]. In what follows, we work
with this G3.

Step 3: kill the x5-linear quadratic. Apply the shear xi 7→ xi+mix5 (i = 2, 3, 4),
keeping x5 fixed. Then

G3(x2+m2x5, x3+m3x5, x4+m4x5) = G3+x5

(
m2 ∂x2

G3+m3 ∂x3
G3+m4 ∂x4

G3

)
+(terms in x2

5, x
3
5).

Hence, the coefficient of x5 changes by a linear combination of the partials of
G3:

Q̃2 7−→ Q̃2 +m2 ∂x2
G3 +m3 ∂x3

G3 +m4 ∂x4
G3.

For the Hesse form, one has

∂x2
G3 = 3x2

2 + λx3x4, ∂x3
G3 = 3x2

3 + λx2x4, ∂x4
G3 = 3x2

4 + λx2x3.

Therefore, m2,m3,m4 can be chosen to eliminate the three cross terms x2x3, x2x4, x3x4

in the quadratic, so that the new x5-coefficient is diagonal:

Q̃2 = αx2
2 + βx2

3 + γx2
4.

A further replacement x5 7→ x5 + ax2 + bx3 + cx4 adjusts the diagonal part; a
short calculation shows that suitable a, b, c (depending on α, β, γ, d) make the
entire x5-linear coefficient vanish.1 Thus we reach

F ∼ G3(x2, x3, x4) + d x3
5.

1One may also solve simultaneously for (m2,m3,m4) and (a, b, c) so that after the shear
and the linear change of x5 the x5-linear term is zero; any x2

5-terms reintroduced by the shear
are absorbed by this final replacement of x5.
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Step 4: diagonal rescaling. Apply diagonal scalings (x2, x3, x4, x5) 7→ (sx2, tx3, ux4, vx5).
The coefficients become s3, t3, u3, λ stu, v3 respectively on x3

2, x
3
3, x

3
4, x2x3x4, x

3
5.

Impose s3 = 1, v3 = 1, and λ stu = 1; then, writing σ = (t/s)3, τ = (u/s)3, we
obtain

F ∼ x3
2 + σ x3

3 + τ x3
4 + x3

5 + x2x3x4,

as claimed.

The (x0, x1)-part. On Sym2〈x0, x1〉 ⊗ x6, the GL(2)-action diagonalizes the
quadratic, giving x2

0x6 + ρ x2
1x6 with ρ ∈ C×.

Consistency check. The parameters (σ, τ, ρ) are free (up to overall projective
scaling), in agreement with the dimension count dim(WH) = 23, effective group
dimension 19; hence, 23− 19− 1 = 3 for the component in Case k = 21.
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Table 2: Summary of closed orbit representatives, criteria used, and component
dimensions for k = 1, . . . , 21. C-H means the Convex-hull criterion and C-F
means the Casimiro–Florentino criterion.
k Criterion Normal form Parameters Dim

1 C-H x2x
2
3 + x1x3x4 + x2

2x5 + x0x
2
5 + x2

1x6 + x0x4x6 none 0

2 C-H x2
2x4 + x1x

2
4 + x1x3x5 + x0x

2
5 + x1x2x6 + x0x3x6 none 0

3 C-F x1x
2
3 + x1x3x4 + x1x

2
4 + x2

2x5 + x0x
2
5 + x1x2x6 +

x0x3x6 + αx0x4x6

α ∈ C× 1

4 C-H x3
3 + x2x3x4 + x1x

2
4 + x2

2x5 + x1x3x5 + x0x4x5 +
x1x2x6 + αx0x3x6

α ∈ C× 1

5 C-H x3
3+x2x3x4+x1x

2
4+x2

2x5+x1x3x5+x0x
2
5+x2

1x6+
αx0x3x6

α ∈ C× 1

6 C-H x2
3x4 + x1x

2
4 + x2x3x5 + x0x

2
5 + x2

1x6 + x0x2x6 none 0

7 C-H x2x
2
4 + x2

2x5 + x1x3x5 + x0x4x5 + x2
1x6 + x0x3x6 none 0

8 C-F x3
3+x0x

2
4+x0x

2
5+x0x

2
6+x2

1x4+ρ x1x2x5+σ x2
2x6 (ρ, σ) ∈ (C×)2 2

9 C-F x2
2x3 + τ x2x

2
3 + x0x

2
4 + ρ x0x

2
5 + x1x

2
4 + x1x

2
5 +

x0x2x6 + x1x3x6

(τ, ρ) ∈ (C×)2 2

10 C-F x2
2x3 + τ x2x

2
3 + x0x

2
4 + x0x

2
5 + x0x

2
6 + x1x2x4 +

ρ x1x3x5

(τ, ρ) ∈ (C×)2 2

11 C-F x3
1+x3

2+x3
3+ τ x3

4+ρ x1x2x3+σ x1x2x4+x0x
2
5+

x0x
2
6

(τ, ρ, σ) ∈ (C×)3 3

12 C-F x1x
2
4 + x2

2x5 + x2
3x5 + x0x4x5 + x2

1x6 + x0x2x6 none 0

13 C-F x3
3 + x0x

2
4 + x0x

2
5 + x1x3x4 + ρ x2x3x5 + x2

1x6 +
σ x2

2x6 + x0x3x6

(ρ, σ) ∈ (C×)2 2

14 C-F x3
2 + x0x

2
3 + x0x

2
4 + x0x

2
5 + x0x

2
6 + x1x

2
3 + τ x1x

2
4 +

x1x
2
5 + x1x

2
6

τ ∈ C× 1

15 C-F x2
3x4 + τ x3x

2
4 + x0x3x5 + x0x4x6 + x2

1x5 + ρ x2
2x6 (τ, ρ) ∈ (C×)2 2

16 C-F x3
2 + σ1x

3
3 + σ2x

3
4 + ρ x2x3x4 + x1x2x5 + x0x3x6 +

x0x
2
5 + x2

1x6 + κx2
2x3 + µx2

3x4 + λx2
2x4

(σ1, σ2, ρ, κ, µ, λ) ∈ (C×)6 6

17 C-F x2
3x4 + τ x3x

2
4 + x0x3x5 + x1x4x5 + x2

0x6 + x2
1x6 +

ρ x2
2x6

(τ, ρ) ∈ (C×)2 2

18 C-F x3
2 + σ1x

3
3 + σ2x

3
4 + ρ x2x3x4 + x0x2x5 + x1x3x5 +

αx0x4x5 + x0x2x6 + β x1x3x6 + γ x1x4x6

(σ1, σ2, ρ, α, β, γ) ∈ (C×)6 6

19 C-F x3
3+x0x

2
4+x1x4x5+x2x

2
5+x2

0x6+x2
1x6+ρ x2

2x6+
σ x0x1x6

(ρ, σ) ∈ C×2
2

20 C-F x3
4 + x2

0x5 + x2
1x5 + x2

2x5 + x2
3x5 + x2

0x6 + τ x2
1x6 +

x2
2x6 + x2

3x6

τ ∈ C× 1

21 C-F x3
2 + σ x3

3 + τ x3
4 + x3

5 + x2x3x4 + x2
0x6 + ρ x2

1x6 (σ, τ, ρ) ∈ (C×)3 3
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5 Singular loci of 21 polystable cubic fivefolds

In this section, we determine the singular loci of the closed–orbit representatives
φnf
k constructed in Section 4. For each k = 1, . . . , 21, we set

Xk := V (φnf
k ) ⊂ P6

and compute

Sing(Xk) = V
(
J(φnf

k )
)
⊂ P6, J(φ) :=

(
∂φ

∂x0
, . . . ,

∂φ

∂x6

)
: (x0, . . . , x6)

∞,

i.e. the scheme cut out by the saturated Jacobian ideal. We give a set–theoretic
description of Sing(Xk) in each case, and when isolated points occur, we also
record the corank and the local invariants (Milnor and Tjurina numbers, which
agree for our quasi–homogeneous normal forms). Table 3 presents a compact
summary—listing the type and degree of the top–dimensional part and indicat-
ing the presence (or absence) of isolated points. Detailed case–by–case state-
ments are recorded as Propositions 5.1–5.24.

The computations reveal a small list of geometries for the positive–dimensional
singular loci: linear spaces (lines, planes, and 3–spaces), smooth conics, quadric
surfaces (including the rank–3 quadric in Case k = 10), and quartic complete
intersections CI(2, 2). Only two components exhibit isolated singular points—
Cases k = 1, 6. Cases k = 1 and k = 6 carry a wild isolated hypersurface
singularity of type

QH(3)19 ∼r.e. X2Y + Y 4 +XZ3,

with µ = τ = 19 and corank 3 (Definition 5.3, Propositions 5.1 and 5.9), pro-
viding the promised appearance of wild points on the boundary in dimension
five.

Computationally, we work throughout with Gröbner–basis routines for sat-
uration and primary decomposition (cf. the software cited in the references),
and we evaluate local algebras to extract the numerical invariants at isolated
points. The arguments are elementary once the normal forms of Section 4 are
fixed, and no additional geometric input is required beyond the Jacobian–ideal
calculations. All computations in this section were carried out using Macaulay2
and Singular [M2, Sing].

5.1 Case k = 1

Proposition 5.1. Let X1 = V (ϕnf
1 ) ⊂ P6. The set-theoretic singular locus is

Sing(X1) = C ∪ {P},

where
C = {x0 = x1 = x2 = x3 = 0, x 2

5 + x4x6 = 0 }
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is a smooth conic in the plane {x0 = x1 = x2 = x3 = 0} ∼= P2 (hence, degC =
2), and

P = (1 : 0 : 0 : 0 : 0 : 0 : 0)

is an isolated singular point.

Proposition 5.2. At the isolated point P one has µ(P ) = τ(P ) = 19 and
corank(P ) = 3. By the splitting lemma, the germ is right-equivalent to

X2Y + Y 4 +XZ3,

Definition 5.3 (Notation). We write QH(3)19 for the isolated hypersurface
singularity analytically equivalent to X2Y +Y 4+XZ3. It is quasi-homogeneous
of total degree 24 with respect to weights (wX , wY , wZ) = (9, 6, 5).

Remark 5.4. The type QH(3)19 is wild in Arnold’s sense (in particular, it is
neither simple, unimodal, nor bimodal).

5.2 Case k = 2

Proposition 5.5. Let X2 = V (φnf
2 ) ⊂ P6. Then

Sing(X2) = L01 ∪ C,

with L01 = V (x2, x3, x4, x5, x6) ' P1, and

C = V (x0, x1, x2, x
2
5 + x3x6, x

2
4 + x3x5) ⊂ Π, Π = {x0 = x1 = x2 = 0} ' P3.

Here C is a complete intersection CI(2, 2) of degree 4, with L01 ∩ C = ∅.

5.3 Case k = 3

Proposition 5.6. Let X3 = V (φnf
3 ) ⊂ P6. Then

Sing(X3) = V (x2, x3, x4, x5) ∪ Σ,

Σ = V (x1, x2, x5, x
2
3 + x3x4 + x2

4) ⊂ Π′ = {x1 = x2 = x5 = 0} ' P3.

The degrees of the top-dimensional components are {1, 2}. No isolated singular
points occur.

5.4 Case k = 4

Proposition 5.7. Let X4 = V (φnf
4 ) ⊂ P6. Then

Sing(X4) = V (x2, x3, x4, x5) ∪ V (x0, x1, x2, x3, x4).

Thus, Sing(X4) ' P2 ∪ P1, with no isolated points.
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5.5 Case k = 5

Proposition 5.8. Let X5 = V (φnf
5 ) ⊂ P6. Then

Sing(X5) = V (x2, x3, x4, x5) ' P2.

5.6 Case k = 6

Proposition 5.9. Let X6 = V (φnf
6 ) ⊂ P6. Then

Sing(X6) = {e6} ∪ V (x3, x4, x5, x6, x
2
1 + x0x2), e6 = (0 : 0 : 0 : 0 : 0 : 0 : 1).

At e6, we have µ = τ = 19, corank= 3, of type QH(3)19.

5.7 Case k = 7

Proposition 5.10. Let X7 = V (φnf
7 ) ⊂ P6. Then

Sing(X7) = C ∪ L56, L56 = V (x0, x1, x2, x3, x4),

C = V (x4, x5, x6, x
2
2 + x1x3, x

2
1 + x0x3) ⊂ Π = {x4 = x5 = x6 = 0}.

C is a CI(2, 2) of degree 4; C ∩ L56 = ∅.

5.8 Case k = 8

Proposition 5.11. Let X8 = V (φnf
8 ) ⊂ P6. Then

Sing(X8) = L02 ∪ S, L02 = V (x1, x3, x4, x5, x6),

S = V (x0, x1, x3, x
2
4 + x2

5 + x2
6).

L02 ' P1, S is a quadric surface of degree 2, with L02 ∩ S = ∅.

5.9 Case k = 9

Proposition 5.12. Let X9 = V (φnf
9 ) ⊂ P6. Then

Sing(X9) = V (x2, x3, x4, x5) ' P2.

5.10 Case k = 10

Proposition 5.13. Let X10 = V (φnf
10) ⊂ P6. Then

Sing(X10) = L01 ∪ S,

with L01 = V (x2, x3, x4, x5, x6) and

S = V (x0, x2, x3, x
2
4 + x2

5 + x2
6),

a rank-3 quadric surface in P3 with an ordinary double point A1 at (0 : 1 : 0 :
0 : 0 : 0 : 0). The intersection L01 ∩ S = {(0 : 1 : 0 : 0 : 0 : 0 : 0)}.

51



5.11 Case k = 11

Proposition 5.14. Let X11 = V (φnf
11) ⊂ P6. Then

Sing(X11) = V (x1, x2, x3, x4) ' P2.

5.12 Case k = 12

Proposition 5.15. Let X12 = V (φnf
12) ⊂ P6. Then

Sing(X12) = L56 ∪ C, L56 = V (x0, x1, x2, x3, x4),

C = V (x4, x5, x6, x
2
2 + x2

3, x
2
1 + x0x2),

a curve of degree 4, with L56 ∩ C = ∅.

5.13 Case k = 13

Proposition 5.16. Let X13 = V (φnf
13) ⊂ P6. Then

Sing(X13) = T ∪Π+ ∪Π−,

with T = V (x3, x4, x5) ' P3, and

Π± = V (x0, x3, x5 ∓ ix4, x1 ± 2ix2) ' P2.

Their intersections are Π+ ∩Π− = {e6}, T ∩Π± = ℓ±, with

ℓ± = V (x0, x3, x4, x5, x1 ± 2ix2) ' P1,

so that T ∩Π+ ∩Π− = {e6}.

5.14 Case k = 14

Proposition 5.17. Let X14 = V (φnf
14) ⊂ P6. Then

Sing(X14) = S ∪ L01,

where S = V (x2, x0, x
2
3+x2

4+x2
5+x2

6) ⊂ H = {x0 = x2 = 0} ' P4, a quadric 3-
fold cone with vertex v = (0 : 1 : 0 : 0 : 0 : 0 : 0), and L01 = V (x2, x3, x4, x5, x6).
They meet at S ∩ L01 = {v}.

5.15 Case k = 15

Proposition 5.18. Let X15 = V (φnf
15) ⊂ P6. Then

Sing(X15) = T1 ∪ T2,

with T1 = V (x0, x3, x4) ' P3, T2 = V (x3, x4, x5, x6) ' P2. Their span is
{x3 = x4 = 0} ' P4, and

T1 ∩ T2 = V (x0, x3, x4, x5, x6) ' P1.
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5.16 Case k = 16

Proposition 5.19. Let X16 = V (φnf
16) ⊂ P6. Then

Sing(X16) = V (x2, x3, x4) ' P3.

5.17 Case k = 17

Proposition 5.20. Let X17 = V (φnf
17) ⊂ P6. Then

Sing(X17) = T1 ∪ T2,

with T1 = V (x3, x4, x5) ' P3, T2 = V (x0, x1, x3, x4) ' P2, and

T1 ∩ T2 = V (x0, x1, x3, x4, x5) ' P1.

5.18 Case k = 18

Proposition 5.21. Let X18 = V (φnf
18) ⊂ P6. Then

Sing(X18) = V (x2, x3, x4) ' P3.

5.19 Case k = 19

Proposition 5.22. Let X19 = V (φnf
19) ⊂ P6. Then

Sing(X19) = V (x3, x4, x5) ' P3.

5.20 Case k = 20

Proposition 5.23. Let X20 = V (φnf
20) ⊂ P6. Then

Sing(X20) = Y ∪L56, Y = V (x4, x5, x
2
0+x2

1+x2
2+x2

3), L56 = V (x0, x1, x2, x3, x4).

5.21 Case k = 21

Proposition 5.24. Let X21 = V (φnf
21) ⊂ P6. Then

Sing(X21) = V (x2, x3, x4, x5) ' P2.
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Table 3: Singular loci of the 21 closed-orbit representatives (Section 5)

k Singular locus (notation of §5) Type / degree of top-
dimensional part

Isolated point(s) / invariants

1 C∪{P} with C a smooth conic,
P = (1:0:0:0:0:0:0)

conic (deg 2) one point P : µ = τ =
19, corank 3, type QH(3)19
(r.e. X2Y + Y 4 +XZ3)

2 L01 ∪ C with L01
∼= P1, C a

CI(2, 2) in Π (disjoint)
line P1 + quartic curve
CI(2, 2) (deg 4)

̶

3 V (x2, x3, x4, x5) ∪ Σ with Σ ⊂
Π′ a quadric surface

plane P2 (deg 1) + quadric
surface (deg 2)

̶

4 V (x2, x3, x4, x5) ∪
V (x0, x1, x2, x3, x4)

P2 ∪ P1 ̶

5 V (x2, x3, x4, x5) plane P2 (deg 1) ̶
6 {e6} ∪ V (x3, x4, x5, x6, x2

1 +
x0x2)

conic (deg 2) one point e6 = (0:0:0:0:0:0:1):
µ = τ = 19, corank 3, type
QH(3)19

7 C ∪ L56 with L56
∼= P1, C a

CI(2, 2) in Π (disjoint)
line P1 + quartic curve
CI(2, 2) (deg 4)

̶

8 L02 ∪ S with L02
∼= P1, S a

quadric surface (disjoint)
line P1 + quadric surface
(deg 2)

̶

9 V (x2, x3, x4, x5) plane P2 (deg 1) ̶
10 L01 ∪ S with S a rank-3

quadric surface; L01 ∩ S =
{(0:1:0:0:0:0:0)}

line P1 + quadric surface
(deg 2)

̶

11 V (x1, x2, x3, x4) plane P2 (deg 1) ̶
12 L56 ∪ C with L56

∼= P1, C a
degree-4 curve (disjoint)

line P1 + quartic curve
(deg 4)

̶

13 T ∪Π+∪Π− with T ≃ P3, Π± ≃
P2; T ∩ Π± = ℓ±, Π+ ∩ Π− =
{e6}

P3 (deg 1) ̶

14 S ∪ L01 with S ∩ L01 = (0 : 1 :
0 : 0 : 0 : 0 : 0)

quadric 3-fold cone (deg 2) ̶

15 T1 ∪ T2 with T1 ≃ P3, T2 ≃ P2;
T1 ∩ T2 ≃ P1

P3 (deg 1) ̶

16 V (x2, x3, x4) P3 (deg 1) ̶
17 T1 ∪ T2 with T1 ≃ P3, T2 ≃ P2;

T1 ∩ T2 ≃ P1
P3 (deg 1) ̶

18 V (x2, x3, x4) P3 (deg 1) ̶
19 V (x3, x4, x5) P3 (deg 1) ̶
20 Y ∪ L56, with Y = {x4 = x5 =

x2
0+x2

1+x2
2+x2

3 = 0}; Y ∩L56 =
{(0:0:0:0:0:0:1)}

quadric 3-fold (deg 2) + line
P1

̶

21 V (x2, x3, x4, x5) plane P2 (deg 1) ̶

Notes. Notation follows Section 5: L01 = V (x2, x3, x4, x5, x6), L56 = V (x0, x1, x2, x3, x4),
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L02 = V (x1, x3, x4, x5, x6), Π = {x4 = x5 = x6 = 0}, Π′ = {x1 = x2 = x5 = 0}, T =
V (x3, x4, x5), Π± = V (x0, x3, x5 ∓ ix4, x1 ± 2ix2), e6 = (0 : 0 : 0 : 0 : 0 : 0 : 1). The
type QH(3)19 denotes the quasi-homogeneous isolated hypersurface singularity that is right-
equivalent to X2Y + Y 4 +XZ3 (wild).

6 Adjacency relations among strictly semistable
components

In this section, we record the adjacency relations among the closed strata
{Φk}21k=1 ⊂ P(W )ss, where W = Sym3C7. We adopt the following conven-
tion: two components Φi and Φj are adjacent if there exists a codimension-one
wall in the Hilbert–Mumford weight space such that the maximally destabilizing
1-PS’s for general points of Φi and Φj coincide on the wall, and both specialize
to the same unstable limit in P(W ) (see Definition 6.2).

This notion of adjacency reflects wall-crossing in Kirwan’s stratification, and
geometrically corresponds to codimension-one faces of the convex cones I(r)≥0

associated with the 1-PS weights.
Our strategy is as follows:

(1) For each pair of weight vectors ri, rj listed in Section 2, we examine the
intersections

I(r)≥0 ∩ I(ri)=0, I(r)≥0 ∩ I(rj)=0,

and determine whether they are maximal subsets in the corresponding
hyperplanes. The same algorithm as in Section 2 can be applied here.

(2) If these intersections are maximal precisely when r = rj (resp. r = ri),
then Φi and Φj admit a common degeneration.

(3) Using the explicit normal forms from Section 4, we check that generic
representatives ϕ̃i ∈ Φi, ϕ̃j ∈ Φj satisfy

lim
t→0

λj(t) · ϕ̃i = lim
t→0

λi(t) · ϕ̃j ,

thereby confirming adjacency.

(4) For all other pairs, we rule out adjacency by support considerations to-
gether with the non-inclusion results of Section 7.

The main result of this section is the following classification:

Theorem 6.1. Among the closed strata Φk in the strictly semistable locus, the
only nonempty pairwise intersections are the following eight pairs:

{Φ1,Φ7}, {Φ2,Φ6}, {Φ3,Φ12}, {Φ8,Φ19},

{Φ9,Φ15}, {Φ10,Φ17}, {Φ11,Φ21}, {Φ14,Φ20}.

All other pairwise intersections are empty.
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Thus, the adjacency graph of the boundary consists precisely of these eight
edges, realized as wall-crossings in the Hilbert–Mumford weight space (see Propo-
sitions 6.3-6.10 for the case-by-case verifications).

For the following definition, see [Kir84], [DH98], and [Tha96].

Definition 6.2. [Adjacency via wall-crossing] Let Φi,Φj be closed strata in the
strictly semistable locus. We say that Φi and Φj are adjacent if there exists a
codimension-one wall in the Hilbert–Mumford weight space such that for general
f ∈ Φi and g ∈ Φj one has µ(f, λi) = µ(f, λj) on the wall and both specialize
to the same unstable limit in P(W ).

The following sequence of propositions and the theorem can be verified by
computations using the same algorithm as in Section 2. More precisely, we work
inside the hyperplane I(rk)=0 ⊂ I and determine the inclusion-maximal subsets
of the form I(r)≥0 ∩ I(rk)=0, where r ∈ Z7

(0) ranges over 1-PS’s of T .

Proposition 6.3. The closed strata Φ1 and Φ7 are both zero-dimensional and
adjacent. For r ∈ Z7

(0), the intersection I(r)≥0 ∩ I(r1)=0 is a maximal subset in

I(r1)=0 if and only if r = r7, and I(r)≥0∩I(r7)=0 is a maximal subset in I(r7)=0

if and only if r = r1. Moreover, for suitable specializations (with all coefficients
of ϕk normalized to 1) ϕ̃1, ϕ̃7 one has

lim
t→0

λ7(t) · ϕ̃1 = lim
t→0

λ1(t) · ϕ̃7 = x0x
2
5 + x2

1x6.

Proposition 6.4. The closed strata Φ2 and Φ6 are both zero-dimensional and
adjacent. For r ∈ Z7

(0), the intersection I(r)≥0 ∩ I(r2)=0 is a maximal subset in

I(r2)=0 if and only if r = r6, and I(r)≥0∩I(r6)=0 is a maximal subset in I(r6)=0

if and only if r = r2. Moreover, for suitable specializations (with all coefficients
of ϕk normalized to 1) ϕ̃2, ϕ̃6 one has

lim
t→0

λ6(t) · ϕ̃2 = lim
t→0

λ2(t) · ϕ̃6 = x1x3x5 + x0x3x6.

Proposition 6.5. The closed stratum Φ3 is one-dimensional and Φ12 is zero-
dimensional. For r ∈ Z7

(0), the intersection I(r)≥0∩ I(r3)=0 is a maximal subset

in I(r3)=0 if and only if r = r12, and I(r)≥0 ∩ I(r12)=0 is a maximal subset in
I(r12)=0 if and only if r = r3. Moreover, for suitable specializations (with all
coefficients of ϕk normalized to 1) ϕ̃3, ϕ̃12 one has

lim
t→0

λ12(t) · ϕ̃3 = lim
t→0

λ3(t) · ϕ̃12 = x1x
2
4 + x2

2x5 + x0x3x6.

Proposition 6.6. The closed strata Φ8 and Φ19 are both two-dimensional and
adjacent. For r ∈ Z7

(0), the intersection I(r)≥0 ∩ I(r8)=0 is a maximal subset

in I(r8)=0 if and only if r = r19, and I(r)≥0 ∩ I(r19)=0 is a maximal subset in
I(r19)=0 if and only if r = r8. Moreover, for suitable specializations (with all
coefficients of ϕk normalized to 1) ϕ̃8, ϕ̃19 one has

lim
t→0

λ19(t)·ϕ̃8 = lim
t→0

λ8(t)·ϕ̃19 = x3
3+x0x

2
4+x0x4x5+x0x

2
5+x2

1x6+x1x2x6+x2
2x6
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Proposition 6.7. The closed strata Φ9 and Φ15 are both two-dimensional and
adjacent. For r ∈ Z7

(0), the intersection I(r)≥0 ∩ I(r9)=0 is a maximal subset

in I(r9)=0 if and only if r = r15, and I(r)≥0 ∩ I(r15)=0 is a maximal subset in
I(r15)=0 if and only if r = r9. Moreover, for suitable specializations (with all
coefficients of ϕk normalized to 1) ϕ̃9, ϕ̃15 one has

lim
t→0

λ15(t) · ϕ̃9 = lim
t→0

λ9(t) · ϕ̃15 = x3
3 + x0x4x5 + x1x2x6 + x0x3x6

Proposition 6.8. The closed strata Φ10 and Φ17 are both two-dimensional and
adjacent. For r ∈ Z7

(0), the intersection I(r)≥0 ∩ I(r10)=0 is a maximal subset

in I(r10)=0 if and only if r = r17, and I(r)≥0 ∩ I(r17)=0 is a maximal subset in
I(r17)=0 if and only if r = r10. Moreover, for suitable specializations (with all
coefficients of ϕk normalized to 1) ϕ̃10, ϕ̃17 one has

lim
t→0

λ17(t) · ϕ̃10 = lim
t→0

λ10(t) · ϕ̃17 = x3
3 + x1x3x5 + x0x4x5 + x1x2x6

Proposition 6.9. The closed strata Φ11 and Φ21 are both three-dimensional
and adjacent. For r ∈ Z7

(0), the intersection I(r)≥0 ∩ I(r11)=0 is a maximal

subset in I(r11)=0 if and only if r = r21, and I(r)≥0 ∩ I(r21)=0 is a maximal
subset in I(r21)=0 if and only if r = r11. Moreover, for suitable specializations
(with all coefficients of ϕk normalized to 1) ϕ̃11, ϕ̃21 one has

lim
t→0

λ21(t) · ϕ̃11 = lim
t→0

λ11(t) · ϕ̃21

= x3
2 + x2

2x3 + x2x
2
3 + x3

3 + x2
2x4 + x2x3x4 + x2

3x4 + x2x
2
4 + x3x

2
4 + x3

4

Proposition 6.10. The closed strata Φ14 and Φ20 are both one-dimensional
and adjacent. For r ∈ Z7

(0), the intersection I(r)≥0 ∩ I(r14)=0 is a maximal

subset in I(r14)=0 if and only if r = r20, and I(r)≥0 ∩ I(r20)=0 is a maximal
subset in I(r20)=0 if and only if r = r14. Moreover, for suitable specializations
(with all coefficients of ϕk normalized to 1) ϕ̃14, ϕ̃20 one has

lim
t→0

λ20(t) · ϕ̃14 = lim
t→0

λ14(t) · ϕ̃20 = x0x3x5 + x1x3x5 + x0x3x6 + x1x3x6

Collecting the above, we obtain Theorem 6.1.

7 Non-inclusions and algorithmic certification

In this section, we prove Proposition 3.5. As treating all 21× 20 = 420 ordered
pairs (k, l) by hand is essentially impossible, we rely on computer algebra to
produce a machine-checkable certificate. To this end, we first recast the problem
in a computational form. All computations in this section were carried out using
Magma [BCP97].

Let P = (pij) be a 7× 7 matrix whose entries pij are algebraically indepen-
dent indeterminates, and let fP

k denote the image of fk under the linear change
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of variables determined by P . Without loss of generality, we may assume that
all coefficients of fk are 1. Then

Supp(fP
k ) ⊂ I(rl)≥0

holds if and only if every coefficient of a monomial that does not lie in I(rl)≥0 (a
forbidden monomial) vanishes in fP

k . These coefficients are cubic polynomials
in the variables pij . Let I(k, l) denote the ideal generated by these coefficients
in the polynomial ring in the pij .

Thus, it suffices to show that the affine variety

V
(
I(k, l) + 〈det(P )− 1〉

)
= ∅.

In practice, we verify this emptiness by a Gröbner basis computation: the basis
reduces to 1, thereby providing a finite, machine-checkable certificate of non-
inclusion. This is the overall strategy we follow below.

We shall use the following Rabinowitsch trick (see [CLO07] Section 4, Propo-
sition 8 p.178).

Theorem 7.1 (Rabinowitsch trick). Let R = C[pij ] be the polynomial ring in
the indeterminates pij, and let I ⊂ R be an ideal and f ∈ R. Introduce a new
indeterminate t. Then the following are equivalent:

V (I) ∩D(f) = ∅ ⇐⇒ 1 ∈ I R[t] + 〈1− tf〉 ⊂ R[t],

where D(f) ⊂ SpecR denotes the principal open subset {p ∈ SpecR | f /∈ p}.

Applying this to our situation, let P = (pij) and set

Jk,l := I(k, l) + 〈 1− t det(P ) 〉 ⊂ R[t].

By Theorem 7.1, the condition
1 ∈ Jk,l

is equivalent to
V
(
I(k, l)

)
∩ D

(
det(P )

)
= ∅.

Hence, it suffices to prove 1 ∈ Jk,l. (Note that this imposes only the open
condition det(P ) 6= 0, which is sufficient for our purposes.)

Theorem 7.2. Running this algorithm using Gröbner bases, we verify that
1 ∈ Jk,l for every pair (k, l). Hence, Proposition 3.5 holds.

Remark 7.3. Although one can run the above algorithm verbatim, the compu-
tation time is substantial, so we consider accelerating the procedure. From the
system of cubic equations in the variables pij, it follows that some of the entries
pij must vanish. We record the following example as typical.
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Example. We show that f6 is not contained in f2 modulo SL(7). The mono-
mials x3

3, x
2
3x4, x2x

2
3, x2x3x4, x2x

2
4, x

2
2x5 do not appear in the support of f2,

i.e., they are forbidden monomials. Embedding f6 into f2 would require trans-
forming the cubic part c(x0, x1, x2, x3) of f6 into the cubic part c(x0, x1, x2) of
f2 via an element of SL(7). Consequently, the change of variables must have
the form

x0 = l0(x0, x1, x2), x1 = l1(x0, x1, x2),

x2 = l2(x0, x1, x2), x3 = l3(x0, x1, x2),

x4 = l4(x0, x1, x2, x3, x4, x5, x6), x5 = l5(x0, x1, x2, x3, x4, x5, x6),

x6 = l6(x0, x1, x2, x3, x4, x5, x6),

where each li is a linear form. However, under such a transformation, the
monomial x2x

2
3 typically re-emerges from l2(x0, x1)x

2
4; this monomial is not in

the support of f2. To avoid this, we must restrict the first three variables to

x0 = l0(x0, x1), x1 = l1(x0, x1), x2 = l2(x0, x1, x2).

Yet new monomials such as x1x
2
5, x0x

3
6, x1x

2
6 arise from the term l2(x0, x1)x

2
4

and are likewise absent from the support of f2. Hence, we must further impose
x4 = l4(x3, x4). With these conditions, the associated matrix P ∈ SL(7) has
the block form 

p0,0 p0,1 0 0 0 0 0
p1,0 p1,1 0 0 0 0 0
p2,0 p2,1 p2,2 0 0 0 0
p3,0 p3,1 p3,2 0 0 0 0
p4,0 p4,1 p4,2 p4,3 p4,4 0 0
p5,0 p5,1 p5,2 p5,3 p5,4 p5,5 p5,6
p6,0 p6,1 p6,2 p6,3 p6,4 p6,5 p6,6


.

Its determinant is zero, so no such matrix lies in SL(7). Therefore, f6 cannot
be contained in f2 modulo SL(7).

Remark 7.4. In this example, the conditions pi,j = 0 alone already force
det(P ) = 0. In general, however, such vanishing conditions by themselves do
not suffice to imply det(P ) = 0. Rather, the relations pi,j = 0 reduce the num-
ber of variables and simultaneously simplify the system of equations, so that a
Gröbner basis computation becomes feasible within a reasonable amount of time,
and from this computation, the conclusion det(P ) = 0 can then be drawn.

We can decide whether pij = 0 is forced by using the Rabinowitsch trick as
follows.

Proposition 7.5. The following are equivalent:

V
(
Ik,l

)
∩D(pij) = ∅ ⇐⇒ 1 ∈ Ik,l + 〈 1− t pij 〉 ⊂ R[t].

Consequently, one can determine whether the vanishing pij = 0 is forced by a
Gröbner–basis computation.
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Computation of GIT quotients of semisimple groups,
arXiv:2308.08049 [math.AG], 2023.

[GP08] G.-M. Greuel and G. Pfister, A Singular Introduction to Commutative
Algebra (2nd ed.), Springer, Berlin, 2008.

[Hab75] W. Haboush, Reductive groups are geometrically reductive, Ann. of
Math. (2) 102 (1975), 67–83.

[Has00] B. Hassett, Special cubic fourfolds, Compos. Math. 120 (2000), 1–23.

[Hes78] W. H. Hesselink, Uniform instability in reductive groups, J. Reine
Angew. Math. 303/304 (1978), 74–96.
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